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H CHAPTER II

BASES OF THE THEORY OF WAVES IN A NONLINEAR
DISPERSIVE MEDIUM

§ 1. Introduction

In the investigation of wave processes in a nonlinear medium,

the initial system is the system (I. of I) in which the bond between

vectors D and E (material equations) is nonlinear. A general solution

of the thus obtained nonlinear system of equations is impossible.

At the same time, for the majority of practically interesting

cases, it is possible to develop an effective method of obtaining

the approximate solutions based on the circumstance that linear losses

in the medium and nonlinear part of the vector of polarization can

usually be considered small [see Introduction, formulas (I.14)-(I.16)].

We will subsequently denote small values by the dimensionless parameter
(<< I). Here we will consider the linear losses by the magnitude

of the first order of smallness with respect to p, so that

I) M A (2.1)

Nonlinear terms in the decomposition of vector of polarization P with

respect to E will ascribe the first and higher order of smallness

with respect to p. It is natural to consider that in the quadratic

medium tensors X p P and e % 2 corresponding to the dipole radiation

and tensors of higher ranks have an order of p3 etc. The lowest

nonlinear term is obviously the largest. In the cubic medium the

FTD-MT-24-259-69 1



tensor 0 is the lowest, and therefore here we will consider 0 p.

Equations (1.1) can be converted to one second order equation,

I which in accordance with that mentioned above about the order of

smallness of nonlinear and dissipative terms will be recorded in

the form:

++ F I(2.2)

where function F includes components of linear polarization connected

with the losses and terms determined by the nonlinear polarization

of the medium; the part of the vector of linear polarization

determined by Re X is designated by P

In a zero approximation (v = 0) equation (2.2) describes the

linear nondissipative medium. Natural waves of such a medium are

monochromatic plane waves of constant amplitude; directions of

polarizations and wave vectors of natural waves are determined by

the properties (2.2). For small p it is natural to assume that

waves in a nonlinear dissipative medium differ little from natural

waves of a Ii:.ear transparent medium. Therefore, if for p = 0
I~C (-(tIAo r)

j. (2.3)

and A 0n - constant complex numbers, then for p $ 0

OnI E~t r= A,~ (p .- k ( 2.4 )

where complex amplitudes are slowly changing functions of the

radius vector r. Thus, the dependence field strength of the wave

in the nonlinear dissipative medium on r enters in two ways:

a) through the exponential in (2.11). Here coordinate r is

the "rapid" spatial scale of changes of the field, which are

connected with the "rapid" coordinate, and has an order of z6= A-=X;
k

b) through the complex amplitude A . Here coordinate r is

"slow," which is note,' by factor P. The spatial scale of changes

of the field, characterized by the "slow" coordinate, has an order

of . relative changi- of complex amplitudes in a weakly

FTD-MT-24-259-69 2



nonlinear, weakly absorbing medium on the wavelength are small A-

Although the method of designing of approximate solutions of 1he

type (2.4) proves to be basically similar to the corresponding

method, developed in the thc'ory of nonlinear oscillations of systems

with concentrated constants (see, for example, [53] and [54]), it
is expedient before passing to nonlinear problems to illustrate

it at first using the simplest example of the linear dissipative
medium. It is necessary to stress that in force what was said in

the introduction and in Chapter 1, the greatest interest for the
examined range of questions is in problems on the propagation of

nonlinear waves in anisotropic dispersive media. In optics only

for an anisotropic (uniform or nonuniform) medium is the obtaining
i knof considerable ratios- possible. Therefore, in this chapter

the following order of consideration of problems about nonlinear
waves is accepted. At first certain relationships characterizing

natural waves in an anisotropic nonabsorbing medium (i = 0) are
deduced. Then, in the example of linear dissipative anisotropic

medium a generalization of the method of slowly changing amplitudes

on distributed systems is given; here and subsequently we are

limited, as a rule, by the first approximation, i.e., by the
constructing of solutions satisfying the initial equation (2.2) to

2
within terds ' . Finally, the method of slowly changing amplitudes

is used for consideration of a number of model ncnlinear interactions

in the quadratic and cubic medium. Here one should stress, however,

that although the thus obtained sys;em of truncated equations of

the first order is considerably simpler than the initial equation,

it, for majority of cases does not allow an exact analytic solution.

Therefore, in 5§ 5-6 of this chapter certain possibilities of further
simplification of the problem, already in the stage of consideration

of truncated equations, are examined.

'See also Chapter III, § 2, where specific dispersion charac-
teristics of a number of crystals utilized in nonlinear optics
are examined.

FTD-MT-24-259-69 3



§ 2. Waves in a Linear Anisotropic
Dispersive Medium

2.1. Zero Approximation (p = 0). Natural Waves
of an AnisotropLc Nonabsorbing Medium

The process of propagation of waves in an anisotropic linear

dispersive medium is described by the wave equation:

+c* [v[vEll =0.. (2.5)

The vector of polarization P is connected with field E by the

linear functional relationship:
A

P(A (t-)d', (2.6)

Awhere x (t')" in the examined case is a tensor with components Kmn'

Let us consider subsequently certain necessary relationships

for plane harmonic waves of constant amplitude:

E - c  -Ae ' ),  (2.7)

where A - constant and e - unit vector. The connection between
0

the wave vector k and frequency W can be obtained if one were to

substitute (2.7) into (2.5). It has the form:

A

+ e [k[ke]] = 0, (2.8)

A A
where 46)) spectral form X (e) (see (1.8)). From a consideration of

(2.8) as systems of equations for components of vector e there

follows the condition of compatibility of the system - equality to £
zero of the determinant composed of the coefficients with components

of vector e. This relationship, being one of the fundamental equations

of crystal optics, gives at the assigned direction k and assigned

tensor , two values of the modulus of the wave vector 1k; k2I. We
:11

assume that they are not equal each other. Each of these values

of k corresponds to its own system of components e, i.e., the



assigned polarization of the "natural" wave. Let us designate the

unit vectors in the direction of the "natural polarizations" by

e and e2 . Vectors [kle 1 I and [k2e2 ], which have directions of

intensities of magnetic fields H1 ,2' are mutually perpendicular,

whereas the very e and e which determine directions El 2 , are

not perpendicular to one another. At the same time, eigenvectorsA

of electrical Induction D. 2=En, 2+4nE,. 2 appear mutually perpendicular.

The direction of energy flow of the natural wave is characterized

by the vector [EH] or the beam vectcr collinear with it s:

S= (2.9)

the modulus of which is equal to the value opposite to the group

speed. Eigenvectors D, E, k and s are located in one plane perpen-

dicular to H. Their locations for one of the natural waves are

shown in Fig. 2-1. The beam vector obeys the relationship which can

be obtained by multiplying scalarly (2.8) by e and differentiating

the obtained equality with respect to k. We have:

A A
20e2+8.mexe+49o0) e e 2ds[e[ke1]. (2.10)

In the derivation of (2.10) there was used the relationship:

e~k Nell -- leIke]]. (2.10a)

E Fig. 2-1. Directions of
vectorZ in an anisotropic

5edium.



2.2 First Approximation (o 3 0); Truncated Equation
for the Absorbing Medium

Let us assume now that the tensor of the linear medium contains
not only the real but also imaginary part so that

A A
X" (0) -^ -(N) (2.11)

We will consider that the medium is excited by a wave of the form
(2.7) harmonic in time, and the polarization of the wave excited in
the medium is similar to one of the natural polarizations of the
nondissipative medium; it f.s required to determined the law of the
change in the overall amplit ude of the wave in space. Although the
problem at hand for the linear medium examined at this point can

be solved accurately (and for waves of a more complex form the
solution can be written with the help of the Fourier integral), we
will discuss the method of its approximate solution, which leads
to replacement of the accurate equation (2.2) by an approximate first

order equation for a slowly changing amplitude. As we will be
convinced subsequently, the advantage of such an approach is, first
of all, the possibility of its generalization of the nonlinear

medium; at the same time this approach proves to be efficient in
the solution of linear problems connected with the propagation of

modulated waves (see, for example, Chapter V).

Thus, the presence in equation (2.2) of disturbances 1' leads
to distinctions in the solution of the perturbed equation from the
solution corresponding to V = 0 and having the form of a wave of

constant amplitude (2.7) for which - - O. With this the solution of
dr

the perturbed equation for P = 0 should, obviously, turn into a

solution of the type (2.7). Having all of this in mind we will
look for the general solution of the perturbed equation in the form

of decomposition (see also [531):

E AiAure~+ iU1 r)+ t'U 2 (r) + IU 3 (r) +. .1e"', (2 .12)

where U1 , U2 ... are periodic functions of r, and quantity A, in

contrast to the case P = 0. is no longer constant, and is determined

by the differential equation

6



-jB(B,()+j 2 B2(A)+.. (213)

Now the problem is reduced to the determination of functions U1 ,

U2, ... , BI, B2. ... , such that expression (2.12), after substitution

into it of values of A, determined from (2.13), proved to he the solu-

tion of the initial differential equation (2.2).

The general procedure of finding the indicated functions is

discussed in monogr'aph [53] quoted above; one should note, however,

that in practice due to the r"apid g:owth in calculating difficulties
with an increase in The number of terms of decompositions
(2.12)-(2.13), it is necessary to b3 limited to the finding of only

one to two first terms. Therefore, fn being limited to m terms

in decompositions ("m-approximation"), it is possible to state

the problem of detecting of the ap<roximate solution, i.e., such

functions U1 .. ,U , BI, ..., Brn which would allow to obtaining a
solution satisfying the initial equation (2.2) to within magnitudes

of the order of pm. Here deviation of the thus obtained approximate
r+1solution from the e.act one has an order of Ji r, and, consequently,

can be made very irill even at quite large r, if ji is small.

Not discussing here the special mathematical questions connected
with asymptotic properties of the 3onstruct solutions (for more

detail on this see monograph [53] and the mathematical work on

the theory of differential equations containing a small parameter),

we will pursue the analysis of th.. first approximation in the

solution of (2.12), i.e., look foc the solution of (2.2) correct

to terms 2.

E = cA (0 e-~r+p U(r)] el" ; (21

a =pB(A).. (2-15)

Substituting (2.14) and (2.11) into (2.2), we have for separate

components of the equation correct to terms of the second order

with respect to p:

=-X(oeAt)--(2.16)

-- t.... --= P; (2.17)

7



[v [vEi = .k (keiI Ae..lr+ ipk [veAl] elkr+

+ ip[V [keAll e=L It[V [VUl] etwi. (2.18)

Using (2.16-(2.18) and considering that quantity [krke]] can be

determined from (2.8) (e is close in conditicns to the eigenvector),

we obtain:
A

"e eIV[VUI-O'(1+4jxa(()) =

= '1j [kveAji 4.c1[V (keAIl-4 eA e-kt. (2.19)

From the last relationship function B(A) and, consequently, the form

of the first order equation, which determine the complex amplitude

A can be simply determined. Actually, the linear differential

operator, which acts on vector U in the left side of (2.19), has the

eigenvalue -ik, and therefore the right side of (2.19) is a resonance

force for it. At the same time, all functions of U in (2.12), in
n

virtue of their determination in the method of successive approxima-

tions, should be limited for arbitrary r. For this it is necessary

that the scalar product of the right side of (2.19) on e be equal to

zero. (Polarization of vector U is perpendicular to e).1  After

multiplication by e we obtain the ordinary dfferential first order

equation
Aja [ke]] V A + eaeA =,( 2.20 )

A =2n
where tensor a=-.

In the derivation of (2.20) there is used the relation

e [k [veil + e [V [kell -2 [ Ikefl V. (2.21)

Equation (2.20) is the sought, so-called "shortened" equation, which

describes in the first approximation the change in complex amplitude

A in space. Let us note that in the first approximation it is

possible, in general, to be limited to the copsideration of only

the truncated equation (2.20), inasmuch as calculation of the term

'This requirement is analogous to the requirement usually used
in the nonlinear theory of oscillations of systems with concentrated
constants, '.e., the requirement of the absence of the first time
harmonics in corresponding scalar functions U1 , ... , n



uU in (2.1L1) essentially does not change the results. Actually,
2

relations (2.14)-(2.15) are written correct to terms up2 ; here the

complex amplitude A, obtained from the thus truncated relations, on

length r can be deflected from the exact value by quantity -.1p r.

On the other hand, as was noted above, amplitude A can be substantially

changed only on intervals z,----. Consequently, on the interval Z

errors in the determination of complex amplitudes prove to be of

the order of "up. Therefore, if we are interested, in the first place

in the flow of transient processes in a nonlinear medium, it is

possible not to consider the addend in (2.14) having an order of U.

Let us turn now to an analysis of equation (2.20). Let us

copy it in the form:

S[kevA= -ec. (2.22)

First of all, let us note that the vector [elkeD has direction

of the vector of the energy flow and, consequently, beam vector

s, and its modulus is equal to

AIfe [ke] I = k cos ks. (2.23)
A

where ks designates the angle between vectors k and s. In order to

determine the law of the change in A in space, let us select a certain

direction the unit vector'along which will be designated by 10, and

the corresponding coordinate through 1. Then the differential

operator G(A), stdnding in the left side of (2.22), can be convert to

the form:

k o s S, l*(2.24)

Hence it is clear that the main direction of action of the differen-

tial operator G is the direction of the beam vector s. The solution

of equation (2.22) has the form:

A = F([sr) exp [-(sr)J, (2.25)
A

where 8= e!e^, and F is the arbitrary function of argument [sr],
Islk cs ks

on which, in accordance with (2.24), the operator G does not act

9



in the boundary value problem, the direction of the change in

amplitude is assigned directly conditions of the problem. Actually,

if there is examined the semilimited anisotropic medium, nto which

from without falls the monochromatic wave, the direction of the

change in amplitude coincides, obviously, with the normal to the

boundary. Introducing the cartesian coordinates and directing the

axis z along the normal (here there can be any position of the

optical axes with respect to the z axis) the solution of equation

(2.21) can be represented in the form:

A = expjo a Z (2.26)
cos sz

where f(x, y) - certain function determined by the boundary conditions.

Formulas (2.25)-(2.26) give the solution of the problem at hand.

in the problem examined above about the propagation of unmodu-

lated waves is a dissipative medium, the truncated equation (2,21),
2equivalent to within p2 to the initial second order equation in

partial derivatives, proves to be an ordinary first order equation,

which is absolutely similar to that which takes place in the theory

of systems with concentrated constant (in this meaning we usually

indicate the space-time analogy, see § 6 of this chapter). This

case, of course, is the simplest; in general the presence of two

independent variables in wave problems makes them more diverse than

corresponding problems in the theory of systems with concentrated

constants. The procedure stated above of obtaining shortened

equations can easily be generalized in the c-se of modulated waves.

2I Being limited by frames of the method of slowly changing amplitudes,

we will consider that the changing of complex amplitudes with time

are slow and, consequently, the solution of equation (2.2) can be

sought in the first approximation in the form:

E = eA (pi, p)e'"-"r'+ItU (r.), (2.27)

where U is the periodic function of time and coordinate.

Repeating the procedure used in the derivation of (2.21) (here,

however, in contrast to the case of the unmodulated wave the relation

of the type (2.19) will be multiplied scalarly by texpi(mt-kr)),

I
10



I

we arrive at the partial differential truncated equation of first

order:
2(a + "W A aA

A

- [V [keAl + UeA e 0=O. (2.28)

The derivative - in (2.28) appears from expression for P, which

for the modulated wave can be represented in the first approximation

as:

Pt-x(jo)e C & v1- -tt ~I e~e(~
A iAek -- = e) etu, ' t'e (o) e- " w '

ON 8 at-- e ". -t U -e)d.. (2.29)

Replacing in (2.28) the coefficient with - with the help of (2.10),
we have finally:

[e keJ, + [e[ki]VA+eeCA=o. (2.30)

The general solution of (2.30) is the product of the solution of

the stationary equation (2.21) on a certain function of the argument

P(t - sr):

A = A(pr).-f[I -(It -sr)I. (2.31)

Further we will pu-..ue the generalization of truncated equations of

the form (2.21) or (2.30) in the case of a nonlinear medium.

Equation (2.30) proves to be very convenient in the investigation of
modulated waves in linear dispersive media, in particular, in the

investigation of distortions of modulation in a dispersive medium,

where calculations founded on spectral concepts prove to be more

laborious.

§ 3. Interaction of Waves in a Nonlinear
Anisotropic Media

3.1. Quadratic Medium. Truncated Equations.

As was already indicated in Chapter I, the appearance of a

wave of nonlinear polarization in a quadratic medium is the result

1i.



of the interaction of two waves of the field; in this paragraph,

by the method of slowly changing amplitudes, we investigate the
general regularities of three-frequency interaction in space. Here

,I for the fullest description of such an interaction, cne should

* consider not only the two initial waves of the field but also the

i natural wave of the medium on the combination frequency. In accor-

dance with what has been said let us present field in the nonlinear
Ul medium in the form:

E = + E2 + E3 eeA (t , pr) e ,(-k,) +

+ e1A, (4 r)e t  + e3A (PI,: lir) e"'+
+ complex conjugate. (2.32)

(Here we will no longer repeat in detail the procedure of

the derivation of the truncated equations, and therefore we will

inot write vectors U n ,jVn in (2.32).) In (2.32) vectors en
characterize the polarizations of the waves, A - complex amplitudes,n
and k - wave vectors of natural waves of the medium. Betweenn
frequencies w for the examined interaction there takes place the

relation:
d = 0 (2.33)

Waves (2.32) in ahe quadratic medium excite pairwise forced

waves of nonlinear polarization on combination frequencies.

Amplitudes of these forced waves have the form:

A A2 - - 3A; P-- A3A t c.

Waves of nonlinear polarization excite corresponding waves of

the field, and the latter, in turn, new waves of polarization; all

of this determines the interaction of waves El, E2 and E3 in the

quadratic medium. Let us recall (see the introduction, formula

\A. 23) and (. 24)) that the thus appearing nonlinear interactions

can lead to stored effects only in the case when wave numbers of

forced waves of nonlinear polarization are close to wave numbersU of natural waves of the meaium on corresponding combination
frequencies, The condition of the appearance of stored effects with

12



three-frequency interactions (it is accepted to call it the "condition

of synchronism") has, obviously, the form

k. + k. Ick. (2.34)

Subsequently, wewill consider also small ift-lI deviations

from the exact condition of synchronism; we will consider that

between wave vectors kn there takes place a relationship somewhat

more general than (2.34) of the form:

,'kl+k= k3 +A, (2.35)

where IAI/k.-.t..

Let us turn to the derivation of the truncated equations. For

this, just as in § 2, the unknown solution of (2.32) should be

substituted into equation (2.2). Let us note that heve, in contrast

to the linear medium, the vector of polarization P will contain

not only terms of the form (2.29), taken for frequencies wl, W2
and w (we will designate them {1}, {2} and {3}), but also nonlinear

terms determined by the interaction of the waves. Therefore, the

full expression for vector P in the quadratic medium, excited by the

three waves, has the following form (in P only components having

frequencies wlp 2 and w3 are increased in value):

K ~ e~eiAe~ iI.~A) lei .. ~2 M ktr+Aty +

•X ".^. e2 AV .2

+ complex conjugate. (2.36)

Conducting further computations, just as in the preceding

paragraph, and ;ollecting terms corresponding to identical frequencies,

(for this one should conduct term-by-term integration with respect
to periods T, 2 ,3  , we arrive at truncated equations of the form

[e, [1ce,] 1a A

, s,OA + [e, [ke,|]vA, + (e1,a e,)A,+

[1e [kX els]2 2  +.[e, [C211 VA, + (A ,+
+ -P- e+ ' =O; (2.37)
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le, e3 I S. + e3Ik. elI VA + (e3.(1 e)A +

+1poeAAi A2 =O,

where
A* A 2X A,

.e3 e2) 2n (e 2. 30)'Cre X 7. ) t7(ex"e ele) =~a - sx" ezr).

The last equalities take place in virtue of the relationship (1.56).

With an accuracy of .p2 equations (2.37) are equivalent to the initial

equation (2.2) for the case of the three-frequency interaction.

When 8 = 0 equations (2.37) become independent; each of them has

the form of equation (2.30) - in this case the medium is linear,

and the principle of superposition acts. Conversely, when 8 0

waves of different frequencies interact with each other; the process

of interaction is described the last in (2.37) having an order of

"IP. As one should have been led to _xpect, the value of these
terms is determined not only by the nonlineprity of the medium

and amplitudes of interacting waves but also by the iisrersion

properties of the medium, which enter into nonlinear terms through

exponentials of the form exp (±iAr). Here the maximum nonlinear

interaction takes place, obviously, when ArO (this corres-onds,

in particular, to toe fulfillment of the exact condition zf synchronism

(2.,34)). At large IAI nonlinear terms prove to be rapidly oscillatory

and therefore cannot essentially change the complex amplitudes

An; waves propagate practi.cally just as they do in a linear medium.

Although equation (2.37) is simpler than the initial nonlinear

equation, even here an analytic solution in general is not possible

to obtain. We will pursue the analysis further and, where it is

possible, by secondary simplifications of system (2.37); here

we will deduce certain general relationships taking place for the

tnree-frequenc- interaction of unmodulated waves in a quadratic

medium without losses.

Let us assume that the nonlinear dielectric occupies the

hall-space z > 0, and three plane waves of the type (2.32) drop

on it at different angles from the vacuum. Then the complex

amplitudes of the waves, which passed into the dielectric, depend

14



obviously only on z, and equations (2.37) obtain the form:

A C s A z d A t e1 - - - * = 0&I Cosks 1 -cossz 0  + i e+ ow .c.AA 0; (2. 3 a)

A A
. Cos k2 .COSS2ZO'-4 + 002 .C.A 3A* = 0; (2.39b)

! c As .cos s o + i e- ', C.A1 A2 =0, (2.39c)

where z0 -unit vector in the direction of the z axis,

SC =z exp { i(A,x + A,y)). ( 2.46()

From (2.39) and (2.40) there follows, thus, the remarkable

conclusion: the effectiveness of the three-fre,uency interaction,

carried out along the z axis, is affected only by z - component

"vector of frequency difference" A and A
z

Multiplying these equations by A/,, A*/o and A/o2 and adding

them with complex conragate expressions, after integration the

following elationships can be obtained, which are correct for the

arbitrary section z

A A A Ak, cos k1 SL-2C sh Z1  A' A '-+ k cos k3 s,.cos 3 z const.

A A A A (2.41)
k, cos k, s'cos s, z, A,-. kcos k2 s, .cos s zo A2 A = const.

22

In order to present (2.41) in a more transparent form, we will

consider that the amplitude of the magnetic field strength H is

expressed by amplitude A in the following way:

A

H= -- kAcos ks. (2.42)

Then relations (2.41) can be presented in the form
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Subtracting the second relations of (2.43) from the first,

we have:
+e"; c ;----- onst. (2.113a)

From (2.43) there follows the law of conservation of energy

flow. Let us multiply the first relation (2.113) by w], relation

(2.43a) by w2 and add the obtained expressions. Considering (2.33)

we will obtain:

[E 1 zo + [E2 Hz 0 + [E3H3I z0= ponst. (2. 44)

The last one means that the general energy flow through the area

element parallel to the boundary does not depend on the coordinate z.

3.2. Energy Relationships with Three-Frequency
Interactions in a Quadratic

Medium. Discussion.

The general energy relations (2.4l)-(2.44), which characterize

the flow of three-frequency interactions in a quadratic medium,

allow a very graphic quantum interpretation. Actually, in quantum

language, the excitation of harmonics and combination frequencies

should be treated, obviously, aF processes of the merging and

division of photons. Having this in mind, the relations (2.33)

and (2.34) multiplied by Planck's constant should be interpreted

as laws of the conservation of energy and moMentum in an elementary

three-photon interaction. Relations (2.43) mean that the sum of

the number of quanta of frequencies w and w3 and the difference
in the number of quanta of frequencies wl and 2 , which passed

through a unit area element parallel to the border of the dielectric

(in an anisotropic dielectric quanta move along the beam, vector),

remain constant. Let us note that in relations (2.33), (2.311) and

(2.43) nonlinear properties of the medium (in quantum language, they

determine the probability of the merging oe division of photons),

in general, do not appear; therefore, these relations act in all

cases when three-photon interactions are solved. Quasi particles

corresponding to the interacting fields shovlO not have to be

16



photons; they can also be phn"3,is, magnons etc. The fulfillment

of relations (2.33), (2.34) and (2.43) will be, of course, obligatory

for them (see also [103]). In connection with what has been said,

there is interest in the consideration of nonlinear interactions

of electromagnetic waves by methods quantum electrodynamics; certain

results in this direction are contained in [98 and 101].

Finally, relations (2.43) prove to be arilogous in form (for more

detail on this see § 6 of this chapter) to the well-known concentrated

constants in the theory of nonlinear reactive systems, the so-called

Manley-Rowe relationships [104]. From this point of view it is

possible to examine (2.43) as a generalization of Manley-Rowe

relationships on anisotropic media (for a one-dimensional medium

such a generalization was carried out in [106 and 107]) and the

quantum interpretation (2.43) given above as the quantum treatment

of the relationships of Manley-Rowe.'

Subsequently, in specific problems, we will use widely relation-
ships of Manley-Rowe; here the values of constants in their right

sides can be determined with the help of boundary conditions charac-

teristic for the given problem.

3.3. On the Interaction of Waves
in a Cubic Medium

We will now exawine the process of the interaction of waves in

an anisotropic dispersive medium, the lowest term in the decomposition

of field polarization for which is the cubic term. The method of

derivation of truncated equations here does not differ from that

examined in 3.1; therefore, being interested, in the first place,

only in qualitative effects distinguishing the cubi,, medium from

the quadratic, here we will not examine the general case of the

four-frequency interaction in the cubic medium but will limit

ourselves to an analysis of the degenerated interaction of unmodulated

waves, which allow revealing the most characteristic properties of

the cubic medium.

'For systems with concentrated constants such quantum interpre-

tation was first given by Weiss [105].
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Let us examine the interaction in the cubic medium of two waves

with frequencies

0)= and W&=0= , (2.45)

E =el A,(pr)e + ek'r . A+ (etr)e"wl kr) + complex conjugate (2.46)

The relationship between wave vectors of natural waves of the linear

medium k and k2 for the examined interaction should be recorded in

the form

k2 =3k, +A, (2.47)

where JA/k-p.

In § 3 of Chapter I it was shown that with the passage of two

waves of frequencies wi and w2 through a cubic medium, in it there

appear components of nonlinear polarization at frequencies
(0 -[+ oi+ =oi; (o 1 +-w 1-- o) =1 ; (€o1+o --w 1 )= 2  (ca-w -o 1 ) = o1 --

-2%; (cx+o 2-- )=ol and ((0 2+O-(02)=(0. Under the condition (2.45)

enumerated components hive a frequency w or 3w. The full expression

for the vector of polarization P (only components with frequencies

w and 3w are retained) now has the form (compare with formula (2.36)
A

P= (1) + (2) + 0 + +IeielA3e 1. t -h 'r elr +

- -Lt * e A2A~e il(%t-ksr)+

41 201~~ e1 e2elA1AA e(Wit) +

.,
+ e e 2AA e -A, ht -mr) e-la" +

A

+ 0
2
+82- e 2 e e ( -A ) + complex conjugate. (2.48)

Proceeding further in the same way as in the preceding paragraphs, it

is possible to arrive at truncated equations, which describe the

process of interaction of unmodulated waves in a nondissipative

cubic medium. They have the form
A A dA-

I I Z + 13C01 .+cos k Cosis o  +3CAA +

+ iy olAIAI+ iy2 621 AA 2 A=0;
A A

k2 os k2 s2 cos;; a, + y A3 elaz.C +
AA* 0. (2.49)
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Here

C=C elel+) Vx e=)2x A

VIZ (e2 (es Oae2 c1 1
2 ^A 2n. Aa -e

(e2 6O' I e, e,)^= ^(e, 0* 1' e2 .l -.

VS (e-- + e , e2,)- ( e, exc . (2.50)

The last equalities follow from relations (1.37).

The most important distinction of truncated equations (2.49)

from corresponding equations of the quadratic medium (2.39) is the

fact that each of equations (2.49) contains no longer one by one,

as in (2.39), but three nonlinear terms describing the interaction

of the waves. Here the character of nonlinear interactions described

by various nonlinear terms in (2.49), as it is easy to see, is

different. Really, nonlinear interactions proportional to the coeffi-

cient y, just as nonlinear interactions in a quadratic medium,

considerably depend on phase relationships between the waves, which
iA z

is described by the factor e z . Nonlinear interactions propor-
tional to yl, Y2, and y3, are not connected with the phase relation-

ships and, consequently, also with dispersion properties of the

medium.

Therefore, the interactions of the first type (just as analogous

interactions in a quadratic medium, they are maximum when A 0

and practically unimportant when A co) can be called "coherent"z
in contrast to "incoherent" interactions, which are connected with

nonlinear coefficients yl, Y2, and y3. Comparing (2.50) with

(1.32) and (1.33), it is easy to clarify the physical meaning of
, "incoherent" interactions (and "self-actions"i) of electromagntic

waves in a cubic medium: they, obviously, are connected with ncn-

linear corrections to the dielectric constant.

We will give subsequently a detailed consideration of the pattern

of "incoherent" interactions; here we will limit ourselves only

to the derivation of general energy relations similar to relations

(2.43)-(2.44).

19



Let us multiply the first equation (2.49) by ., and the

second by , and let us add the obtained expressions with their
2

complex conjugate. Integrating with respect to z, we obtain
A A A A

k, cosk 1 Cos s z. A1A* + k, cos k; s cos $I = A A; const.

(2.51)

Considering (2.42) and (2.45), we have

[EHui±2.+ [E2Hbo= (2.52)

-Manley-Rowe relationship, which is fulfilled in every section z

of the cubic medium for the degenerated four-frequency interaction.

From (2.52) it follows that the increase in quantity of photons

of frequency w2 passing through a unit area element, parallel to
22the border of the dielectric, by a certain number AN 2 is inevitably

connected with a decrease in the number of photons of frequency

Wl by ANI=3AN 2 and conversely. Just as in the case of the quadratic

medium, the indicated relation would have been possible to write

using the quantum interpretation of nonlinear interactions of waves

as a basis.

Using (2.52) and (2.45), we will obtain the law of the conserva-

tion of energy flow:

[El Iz+ [E2 H2'1 o c st.- (2.53)

§ 14. General Characteristic of Interactions of Waves
in Nonlinear Dispersive Media. Boundary

Value Problems. Secondary Simplifica-
tions of Truncated Equations. Side

Forces in a Nonlinear Medium

4.1. Boundary Value Problems; Classification
of Nonlinear Interactions

Truncated equation (2.37) or (2.39) and (2.49) descr..be the

interactions of waves in a nonlinear medium, which occur in absence

20
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'I

of side fields (the linear problem is uniform).'

In § 3, in the derivation of truncated equations, boundary

conditions were considered by us only in the determination of

direction, along which there occurs a change in complex amplitudes,

and the actual values of complex amplitudes A on the border of the
n

nonlinear medium were not specified. A specific definition of the

conditions permits separating within the bounds of the three-frequency

(for a square medium) or four-frequency (for a cubic medium) inter-

actions different special cases corresponding to different physical

effects. A detailed investigation of the boundary value problems

are given in Chapters III-V; here we will give only their classifi-

cation and also examine certain general regularities of the course of

nonlinear interactions corresponding to various boundary conditions.

In the analysis of general properties of nonlinear interactions,

energy relations of the type (2.43)-(2.44) and (2.52)-(2.53) can be

used very effectively; being interested only in the fundamental

side of the matter, we will limit ourselves here to the consideration

of interactions of unmodulated waves in the medium without losses,

for the case IAI = 0.

Let us turn to the three-frequency interactions described by

system (2.39), In the absence of side fields, the three-frequency

interaction can appear only in the case when on the borde- of the

nonlinear medium, at least amplitudes of two waves are different

frow zero. Here, besides the general case,

-AIL)+0; A2()#o; A3 (O)-+O

one should examine such cases for which

A (0) +0. A (0) =4O0 A: (0) = 0: (2.54)

A2 (O)=O; A&()#Q;A(O)L O; (2.55)

A ( 0; A() = O;A (O) 0 ; (2.56)

'We call such a problem in nonlinear theory uniform, noting
in this the absence of "linear" side forces.
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From equations (2.39) it follows that with the three-frequency

interaction in a quadratic medium, in general, there are two opposite

processes:

1. Waves of frequencies wl and w excite the wave at frequency

W3 - the process of "merging of photons," described by equation

(2.39c) occurs.

2. Simultaneously with the process of the merging of photons,

there occurs the process of the "disintegration" of photons of

frequency w 3 (interaction of waves of frequencies w3 and w2 and

frequencies w and wl) described by equations (2.39a) and (2.39b).

In accordance with (2.43 )-(2.411), for increases in energies

dWn of waves on segment dz these relations take place: (in contrast

to the integral relations (2.43)-(2.44), then can be called differen-

tial energy relations)

dW. - ,;d t ._~ W3 _0 dW (2,57)

or, in quantum interpretation

dN -=dN2; dN -dN 3 ; dAN2= -dN 3 , (2.58)

where N1 (z), N2 (z) and N3(z) are numbers of photons in waves 1, 2,

and 3. If N (0)= N(0) and N (0) = 0 (in general, N3(O)<Ni(O),N2(O))

in any case for not too large z the process of merging dominates

over the process of disintegration; a decrease in the number of

photons in waves 1 and 2 in virtue of (2.57) is equal and unimportant

4 and therefore here for a description of the nonlinear interaction

only one equation (2.39c) is sufficient. This equation when

Ac-zconst,A 2 -const has the form

A A

k3 cos k 3 S3 .COs S3 ZO +N2i3 C1 IO, (2.59)

where constant C,=A(O).A 2(O).

From (2.59) it follows that the monotonic growth of amplitude

A3 will. take place as long as amplitudes A1 and A2 can be considered

constants. Amplitude A3 grows linearly in this case with coordinate
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,Cl
A (z) A (0) + ic (2.59a)

A A
k3 COS k 33 COS $3 i0

At large z the reverse process (disintegration) becomes important.

Here equations (2.39a, b) should be considered. The presence of

the reverse process delays the rate of growth A. and, in general,

can obviously lead even to a change in the sign of the derivative __

and, consequently, to the three-dimensional beats of the interacting

waves.

If for boundary conditions of the type (2.54) at small z the

process of "merging" of photons always dominates over the process

of "disintegration," for conditions of the type (2.55)-(2.56) a
reverse situation takes place. If N3(0).N.(), for a description of

th,. process of "disintegration" at small z, here instead of the full

system (2.39) there can be used the equations

A *OSA dLA1
A A "'

k2COSkAsIcoss2Zo -+if A3 (O)A; = O. (2.60b)

Differentiating equation (2.60a) with respect to z and substituting

the derivative _ . from the equation complex conjugate to equationdz

(2.60b), we arrive at the second order equation for amplitude A 1 :

dIA I PA(o).1!,,21 a A1 0. ( 2.61 )
dzz A A A' A.I ki cos ki s -cos s, 4 cos k, s2 ecot s2 Zo

From (2.61) it follows that as long as the intensity of the wave on

frequency w3 considerably exceeds the intensity of waves at

frequencies w1 and w2 ' the "disintegration" of photons of frequency

W3 leads to an exponential increase in amplitudes A1 2 with the

coordinate. The general solution of equation (2.61) has the form

+ (2.62)

and factor of increase

r, = [/ ~P, JA, (0)o),2,,

A A . A A (2.63)
k, ks cos k, acos z zo.eo k s,.cos sgz
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At sufficiently large A1 A it is necessary to consider the

reverse process (in this case, this is the process of merging of

the photons described by equation (2.39c); here the exponential

growth in A1 ,2 is delayed, and.derivatives -dIA.21 can even change
sign.

Besides extreme cases indicated above, for which either
Nj(O),N 2(O)>N 3 (O), or N3(O)>N 1(O),N 2(O), other relationships between the

ji boundary amplitudes of interacting waves can be examined. In parti-

cular, with further specific definition of boundary conditions

(2.54)-(2.56), there can be practical interest in cases when

N2 (0) >> N, (0). N3 0) (2.6141)
and

N (0) = NV3 (0) > A, (0). ( 2.65 )

For not too large z the process of the interaction of waves
corresponding to boundary conditions (2.64) is described by these

equations:
A A d

k, cosks,-cos s, zo =n( +iA 3 () = 0; (2.66)
A A dA °

k, scosk 3 .Cos s 3 ZO T -+ i2 AA (0)= (2.67)

Differentiating (2.66) with respect to z and substituting - from

(2.67) we arrive at the differential second order equations for Al:

d2A 1  - IA ()I(2.68)
dz3 A A A .A * 1 =.(.8k, k, co k, sr Cos s z. cos k, C3.cos s 74

The general solution of equation (2.68) has the form

A, =a2e+r , (2.69),

where //. qtI,040,2,
r2= A As IA, A •_3 (2.70)

k, s kS I-C ¢51 ' Co.OS k3 $3.COS $3 Zo

From (2.69)-(2.70) it thus follows that in the case when amplitude

A 2 can be considered constant, the process of the change in

amplitudes A1 and A has a character of three-dimensional beats

[to compare with (2.59a) and (2.62)].
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Finally, initial stages of the process of three-frequency

interaction with boundary conditions of the form (2.65) are described,

obviously, by equation

A A dA,+•
kj os kr%- cos, zo -72 + i A =0 (2.71)

In all examples examined till now, boundary conditions were selected
in such a way that in any case near the border of the nonlinear

medium, one of two possible nonlinear processes (disintegration or

merging) played the dominating role, which inevitably caused a change

in the space of amplitudes of the interacting waves. At the same time,

in general, such a selection of boundary conditions is possible at

which at each point of the nonlinear medium there occurs the dynamic

equilibrium between processes of merging and disintegration and,

consequently, amplitudes of interacting waves remain constant.

Relationships between amplitudes of such stationary waves can

be found from equations (2.39), in which all derivatives d--O(k=1,2, 3).
dZ

Presenting complex amplitudes in the form A,=[Ak expiq,&(z) and equating

to zero separately the real and imaginary parts of the obtained

relations (see also Chapter III), we arrive at the formula charac-

terizing the bond between numbers of photons in stationary waves

for an arbitrary point of the nonlinear medium (see equation (4.24)):

) ( N2 (z) = [NL (z) + N2 (z)-W (z). (2.72)

The specific definition of boundary conditions permits in a

number of cases considerably simplifying system of truncated i
equations. In the weakly nonlinear medium the spatial scales of

processes of the change in amplitudes of interacting waves prove

to be usually very large for processes described by equations (2.59),

2.61), '(2.68) and (2.71). These scales have, obviously, (see

formula (2.38)) the value

(2.73)
xAn(O) k.

Inasmuch as it was already indicated in the introduction (see

formula (I.14), quantity XA(O)<10 - 0-6 and L. _ IV- 106k in many
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problems of the characteristic length of the coherent interaction I

L (2.711)

Therefore, although in principle both the process of merging and

process of disintegration of the photons always take place, in the

fulfillment of condition (2.74) it is possible, in general, to

consider only that one of these processes which plays the determining

role on the border of the nonlinear medium. Here the ana-ysis of

the full system of truncat :1 equations can be replaced by an analys-s

of the system in which amplitudes of powerful waves are examined as

ssigned functions.

Subsequently, the approximation founded on the indicated circum-

stance will be called the approximation of the assigned field.

Inasmuch as in the approximation of the assigned field interacting

waves are disparate, here within the bounds of the three-frequency

interaction it is possible to separate various physical effects

corresponding to different boundary conditions on the border of the

nonlinear medium.

In the fulfillment of condition (2.74) the problem with bounuary

conditions (2.54) can be called the problem on the radiation of

harmonics and total frequencies in the quadratic medium. The problem

with boundary conditions (2.55) or (2.56) when N3(0) '- N2(0) or

N(0) NI(0) is reduced to the detcting of radiation of waves of

difference frequencies in the quadratic medium. Finally, nonlinear

effects appearing in those cases when the intensity of nne of the

interacting waves considerably exceeds the intensities of the two

others (see equations (2.60a)-(2.60b) and (2.66)-(2.67)), within

the bounds of the approximation of the assigned field can be called

the parameteric interaction of the waves. The last term is based

on the fact that the analysis of interactions described by equations

(2.60a)-(2.60b) or (2.66)-(2.67) can oe conducted also on the

basis of concepts about the medium, the dielectric constant of which

is changed in space and in time according to the law determined by
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changes in the field of the intense wave. In order to be convinced
4. , - of this, we will derive equations describing the propagation of waves

~A
in the medium, the dielectric constant e(t,o, z) of which is changed

according to the law of the traveling wave:

AA

8!, o,e) =eo(1) + e (2.75)

Here u, just as before, small parameter (p<l), the wave vector

k = k z We will consider that in the examined medium at arbitrary
3 3 0
angles to the normal, directed along the z axis, waves at frequencies

(ul and w fall such that wl + W2 = 3 For p<1 it is .atural to

'present the field in the medium in the form (compare (2.32)):

E = El + E, = eAL (Aj )et(' h- ) + e, A2 (t.P
t('t- k') +

+ complex conjugate (2.76)

Substituting (2.75)-(2.76) into equation

i' D+0 __ 0, Av~ (t- 0,
c-[V[VEJ -- , where D= (t,az)E (2.77)

and, using the proce&-re discussed in § 3 of this chapter, we arrive

at the conclusion that the essential interaction between waves El,2
! iin the medium with a dielectric constant of the form (2.75) can

: i take place only with the fulfillment of condition k + k = k

(compare (2.34)), where the process of the change in complex amplitudes

AI and A2 in the space is described by truncated equations of the

form

A A dA 1k, cos kiSt. Cos s1 Z0W + i 1 A; =0; (2. 78a)

kpcos 2 "coss1 Zo-- + iq% 02 A' 0, (2.79b)

where A Ai 4 (ee, e ); t1s = e ,eII); (2.79)

It is easy to see that equations (2.78) have the same form as that of

equations (2.60) and, consequently, allow the existence growing

solutions of the form (2.62), which describe the amplification of

waves E, 2 . The indicated intensification in terms of the three-

frequency interaction of waves in a nonlinear medium should,
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obviously, be treated as a forced coherent process of disintegration

of photons of frequency w3 , which occurs under action of photons

of frequencies w and w On the other hand, with the use of concepts

on the medium with variables parameters the process of amplification

can be treated as the result of the work produced by the nonstationary

medium above waves El, 2 and the very amplification of the waves can

be called parametric amplification.

Similarly, the interaction of waves described by equations

(2.66)-(2.67) can be treated as the parametric interaction in the

medium, the dielectric constant of which ha, the form

A A A
)+ {eI(' ' -k + goI-(2. 80)

The process of spatial beats occurring between waves of frequencies

to and to can be called the parametric conversion of frequency in

a medium with variable parameters.

Of course, the consideration based on equations of the type

(2.30) and their results (2.60) and (2.66)-(2.67) is fuller than the

consideration founded on (2.75) and (2.80), inasmuch as in the first

place, here it is possible io analyze the conditions of applicability

of concepts on the medium with variable parameters and, secondly,

directly calculate the characteristics of the tensor of the second

class A,, in terms of characteristics of the tensor of the nonlinear

polarizability of the quadratic medium. Actually, in virtue of

(2.38) and (2.79)

A A A A
, e, = 4neX-t'-e 3 e2; e2 e e,=4it e2 ' *- e3 e,. ( 2.81)

Within bounds of the uniform problem, the model of the medium, with

parameters variable according to the law of the traveling wave,

is applicable only for the dispersive medium. Actually, the use of

formulas (2.75) and (2.80) assumes the absence of considerable

distortions of the intense wave (frequencies w or w2 ) in the

examined medium. The latter can take place if, first, waves at

frequencies w1 and w2 or w)1 and to3 can be examined as weak, and
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excitation of harmonics n 3 , or n 2 can automatically be disregarded.

It is interesting that if the determining modulation of parametr-r~s

of the medium is an intense force (or, as it is accepted to call

pumping it, wave) can be essentially distorted, the value of the

parametric amplification in such a medium does not exceed e times,

inasmuch as precisely on the characteristic length of the parametric
(2)amplification L( (see formulas (2.63) and (2.73)) the sinusoidal

wave of pumping is turned into a wave of the sawtooth form [compare

(2.73) with (I.24)J. 1

Although the energy relations (2.43)-(2.44) and (2.57)-(2.58) by

themselves do not give information about the "direction" of the

nonlinear process(merging or disintegration) in the quadratic medium,

in those cases when this information can be obtained from conditions

(as takes place in the approximation of the assigned field) -he energy

relations permit estimating the effectiveness of the nonlinear

interaction.

Let us note, first of all, that inasmuch as in interactions of

the examined type there is always preserved the number of quanta,

and the conversion of frequency "upwards" with an interaction of

waves in a nonlinear nondissipative medium occurs considerably more

effective than the conversion cf frequency "downwards."

Let us turn, for example, to the problem on the generation of

difference frequencies in a medium with quadratic polarization,

which corresponds to boundary conditions (2.55). From (2.57) it

follows that signs of increases in energy of waves at frequencies

(, C02, and on the segment of the nonlinear medium Az are
identical, and signs of increases AW, and AW 3 (and consequently, A W 2

and AW 3) are opposite. Four boundary conaitions (2.55) and small

z, AW1.2>0 and AW3<0; the latter means that independently of

the relationship of the number of photons N2 (0) and N 3(0) the

energy of the wave on freqauncy wi with growth z increases only

owing to the one most high-frequency wave. Here the energy removed

'The last circumstance is one of main difficulties standing in

the way of the realization of acoustic parametric amplifiers of a
traveling wave.
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from the wave of' frequency w is divided between waves of frequencies

W2 and w1 with respect to

(2.82)
AW, o

and when O---I the increase in energy of the low-frequency wave is

small.' Conversely, in the problem on the generation of sum

frequencies, for boundary conditions of the type (2.54), AW1.2 <0 and

AW 3>0 and, consequently, all the energy of low-frequency photons

participating in the nonlinear interaction passes into a high-

frequency wave.

Relations analogous to those above can be used in the analysis

of general regularities of parametric amplification and conversion

of frequency. In particular, formula (2.82) describes, obviously,

the relationship of increases in energies of growing waves in the

problem on the parametric amplification.

In conclusion of this point, let us note that although the

classification of nonlinear boundary value problems given above

pertained to three-frequency interactions in the quadratic medium,

analogous considerations can be assumed as the basis of the classi-

fication of different boundary value problems capable of appearing

within the bounds of four-frequency interactions (cubic medium).

Thus, just as in the three-frequency interaction, in the four-

frequency interaction, in general, there simultaneously occur processes

of disintegration and merging of photons, (complicated by effects of

the "self-action" of the waves, see formula (1.32)). For example, the

second equation of (2.49) describes the process of merging of three

photons of frequency w, and the first equation of (2.49) - the

reverse process of disintegration of photons of frequency 3w.

When NI(O) >>N 2 (0) in any case for border the process of merging

'Let us stress that this conclusion pertains only to nonlinear
interactions in a nondissipative medium (medium with "reactive"
nonlinearity). However, an effective generation of waves of
difference frequencies proves to be possible in media with dissipative
nonlinearity, for which energy relations of the type (2.57) are
already inapplicable (see [95]).
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of photons (the process of generation of the third harmonic) pre-

dominates.

For a cubic medium the spatial scale of nonlinear four-frequency

interactions ( ) has the "irm [compare equations (2.39) and (2.49)

and also formula (2.73)]:

WOA, (0) kn  (2.83)

For 1,<L 3) , just as in the fulfillment of condition (2.74) in the

quadratic medium, in the whole cubic medium it is possible to

consider only that nonlinear process (merging or disintegration)

which plays the determining role on its border. Condition 1.<Lo ,

is thus the condition of applicability of the method of the assigned

field in the analysis of four-frequency interactions. The effective-

ness of a certain four-frequency interaction, just as the three-

frequency can be estimated with the help of energy relations of the

type (2.51)-(2.53).

4.2. Side Forces in a Nonlinear Medium. Truncated
Equations of a Nonuniform Problem

of Electrodynamics of a
Nonlinear Medium

The method of conclusion of truncated equations, discussed

in § 3 of this chapter can easily be generalized in the case of a

nonuniform problem.

As an example let us examine the three-frequency interaction in

a quadratic medium, at each point of which there acts a side force -

side current with desnity I(t, r).

Then initial equations of the nonuniform problem have the

form [compare (I.1)]

C &E(2.84a)

rotH= E L L.+ L(,r), (2.84b)

IC & C c
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and the coupling of the vector of polarization P with field E is

recorded in accordance with results of Chapter I. The second order

equation, which corresponds to (2.2), for the nonuniform problem has

the form:

[V"VEIJ+,-%+ - , +, F t, r,E, )+. 7W0. (2.85)

The method of deriving equations of the first approximatior, corre-

sponding to equation (2.85) is analogous to that discussed in § 2-3.

At first it follows to find the general solution in the zero approxi-

mation (P = 0) and then to clarify how nonlinear and dissipative

terms disturb. Here the question of the selection of the order of

smallness of the side current is very important which should be

determined from physical considerations.

In many problems of nonlinear optics the appearance of side

forces in Maxwell equations is connected with natural fluctuations

in the medium. In this case it is natural to consider i p (or
2

even i "v P ) and theefore to examine the plane monochromatic waves

of constant amplitude as natural waves of the medium in a zero

approximation.

Then the solution of (2.85) for the case of a three-frequency

interaction can be sought in the form of the superposition of

three waves with complex amplitudes (2.32) slowly variable in time

and in space. It is necessary to stress that in the nonuniform

problem the dependence of the complex amplitudes of waves in the

medium on time, in general, takes place also when waves falling on

a nonlinear medium, are unmodulated; the latter is connected with

the time dependence of the side current I.

Let us assume that at first I I,- p. In this case the presence

of the side force will already have an effect on th fo m of

equations of the first approximation. Substituting (2.32) into

(2.85), using (2.33), (2.35) and (2.36), multiplying in turn the

obtained expression by

e exp i (o -k1 r); e, exp i (2 t-k r); e= exp 1(03 t-k 3 r)
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and, each time conducting term by term averaging over the period

r1. W.2.3 , we arrive at truncated equations of the nonuniform

problem.

For amplitude A1 , for example, we have:

AO
[el [kl e,]I s,-=5 + [e, [k, elIA, +

1 , I ,2,e+ 'AA; + L , o(pt, pr) 0. (2.86)

Here

at ex" (2.87)

Quite similarly, in equations for A2 and A3 there appear terms
12(pt, pr), and Ia(p( j2r), which can be obtained from (2.87) of the

corresponding replacement of indices. Thus, the presence of a

side current distributed over the medium in the first approximation

leads to the appearance of external forces acting on the slowly

changing complex amplitudes of interacting waves. Formula (2.87)

shows that the essentially the flow of a three-frequency interaction

in a quadratic medium is affected only by those components of the

side current which can be represented in the form of the super-

position of three waves similar in their structure to waves of (2.32),

i.e., for an analysis of the influence of side force =l entering.
into (2.85) on the process of the three-frequency interaction one

should separate from I only components of the form

3

II ,J ,, r).expi(o),,t kr). (2.88)

If current I(t, r) is random, the slowly changing functions I are
n

random. Statistical characteristics of the latter can be easily

determined if statistical. characteristics of the random field I

are known.

Let us note that the fruitfulness of concepts on side fluc-

tuating forces in the theory of natural fluctuations of a non-

quasi-stationary linear medium was first demonstrated in the monograoh
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of S. M. Iytov [108]. There is the possibility of using these

results in the investigation of statistical phenomena in a nonlinear

medium. Certain concrete results obtained in this direction are

discussed in work [56].

In the case, when according to conditions of the problem there
2

should be ascribed the second order of smallness (I i ) to the

outside force, the complex amplitudes can be represented in the form:

where small additions of a characterize the change in the complex

amplitudes due to the influence of side forces. Here if on the

border of the nonlinear medium waves E are unmodulated, instead of
n

(2.89) it is possible to write:

A, pt, ir) = A() (ur + ". ([d, pr). (2.90)

Equations for A (0) have the same form as those for the uniformn
problem, and equations for a have the structure of equations (2.86).

n
Thus, for a1 , for example, we have [compare (2.86)]:

Oa A[el [k, el] sI S,--l + [e, [k, ell I Val + (el a el) a, +.

+i~e +  (Ar ) +A Aa3) - 11(P1, 1r' 0 (2.91)

Thus, the appearance of small ("up or 2) side forces does not change

the general form of the solution of (2.32) and only changes by in

some measure the behavior of the slowly changing complex amplitudes.

With a sufficient degree of accuracy one can assume that here,

just as in the uniform problem, the "direction" of the nonlinear

process (merging or disintegration) in any case near the border of

the medium is determined by boundary conditions.

The presence of intensive side forces ( , 0) is reflected

already In iLie foim of resolution of the problem obtalned ii zero

(p = 0) approximation. Actua:.ly, here the equation of zero

approximation should be recorded in the form (compare (2.5))

'For simplicity hee we do not consider other effects having

an order of u2.
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I

aSE o P V)  al+" UJ 4+ -- U J r + c- ' [V' (VE]I - 0. (2.92)

From (2.92) forced waves E excited in the medium by side forces can

be determined. Let us assume that, for example,

./=m/oexpi(ot-kr), (2.93)

where in general kIm X 0; the side force is not required to have
the form of a transverse wave,

The forced wave can be written in the form

1 '=A exp i (cd-kir)  (2.94)

and, consequently, the amplitude of the forced wave is determined

by the relation (compare (2.8))

i '0 A- - 4 m' (w) A + -0 [ k, [ k, A]]- - 4=m1o =- 0.  (2.95)

For the isotropic medium, and also for the case when in the anisotropic

medium the optical axis is perpendicular to the plane I, m, it is

possible to introduce the scalar dielectric constant s(w) 1 +

+ 4WK(W), and then for kim = 0 we have:

w-'- (k expi(W k, ( 2 .96)
where k. =c2(tV/)

C

From (2.96) it follows that for the weakly absorbing medium

(ImK the assignment of side forces in a zero approximation is

correct only in the case when they do not have a resonance action

on the medium, i.e., if the phase speeds of forced waves are not

equal to phase speeds of natural waves of the medium at corresponding

frequencies (for a side force of the form (2.93) the field of the

forced wave is finite if kI X k ).

In a quadratic medium field E (B) excites the wave of polarization

at frequency 2w:

p2. = pT' [A"e] 2exp i (2t- 2k, r). (2.97)
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The amplitude of' the wave of the second harmonic, excited in the

medium of the wave polarization (2.97) will be finite if k2 2k

(see formula (I.21)-(I.22)).

Thus, in a nonlinear medium the forced wave E(B) can be

examined as the assigned only until distortions of its form are

stored. Everything that has been said means that concepts on side

forces naving an order of p0 in the examined theory does not lead

to internal contradictions only when forced waves, excited by

these forces, can be examined as stationary, which do not undergo

noticeable distortions in the medium. It is natural, therefore,

to treat the influence of such waves on the medium as the modulation

of its parameters. Let us discuss this question in somewhat greater

detail.

4.3. Media with Variables Parameters

In virtue of (1.6), the vector of nonlinear polarization of

the quadratic medium, which is under the influence of a strong side

field (Y 0 ) and natural ("free") wave E

IP( "= Jd " 5(t', 1A) E (I-t')" (t-t'-ts)d +

0

(Here reduced symbolic notation is used,) The first term in

(2.98) describes the interaction of waves E and E(8) the second -

the d~stortion of wave E and the third - distortion of wave E

If iE()i>>lE, with substitution of (2.98) into the Maxwell equaton

it is possible to hold only the first term proportional to EE 
(

)

(stored distortions of wave E (1) are impossible, and distortions of

wave E against the beckground of the influence of wave E(B) on E

are unobtrusive). In this case the behavior of wave E in the quadratic
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medium, which is under the influence of an intense side force, is

described by the following equations [compare with equations (2.84)1:

rot E = i
rtA ;(2.99a)

)ro H - + fi E( (2.99b)

where, the polarizability K(r, t, t,) dependent on time t and in

general on coordinate r, yields expression [see (2.98)]:

S AX (r. ,t,) 9 (t,+ A yt ) (,V-a-l3

= ()+M~rt~t).(2.1i00 )

Equation (2.99) can be used in the investigation of the propagation

of relatively weak waves in a cubic medium, which is under the

influence of intense side electromagnetic fields.

In this case, the polarizability of the equivalent medium with

variable parameters can be represented in tne form

X e)+ (, tO (2 101)
A A

where ' I")=Q)Mr~~', 211

(- (2.102)

If the modulation of parameters of the medium is produced by a side

electrical field, properties of the symmetry of a tensor of the

second order Mmn are directly determined by properties of the
A A V

symmetry of tensors X or 0, which is investigated in Chapter I in
detail. In spite of the fact that in majority of practically

1 interesting problems the model of the medium with variable
appears [see, for example (2.100) and (2.101)] as the

maximum case of the general problem on the interaction of oscillations

and waves in a nonlinear medium,' the approach based on direct

'Comparatively slow changes of properties of the medium can be
obtained with the influence of forces of nonelectric origin. A
classical example is the modulation of the dielectric constant of
the medium with the help of ultrasonic waves. Detailed theoretical
research of the propagation of light in such a medium is given in
the work of S. M. Rytov [109].
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consideration of equations of the type (2.99) is of interest. The

theory in which equations containing tenscr M n(r, t, t'), appear

as the initial can be called the electrodynamics of nonstationary

melia. The expediency of construction of such a theory is connected

to a considerable degree with the importance of clarif, cation on

its basis of general properties of quantu.,-mech-inical and parametric

amplifiers. The nonequi.librium of the medium, utilized in such

amplifiers, is conditioned, as is known, by a variable external

influence - oscillations or pumping waves. Examination of the general

theory of media with variable parameters emerges beyond the frame-

work of this book; we refer the reader to a number of works of

F. V. Bunkin and colleagues [117]-[124] in which for periodically
A

noristationary medium general properties of tensur M radiation,

natural fluctuations etc., are investigated. in this chapter we

will limit ourselves to certain remarks referring to the propa-

gation of waves in a medium with variable paramr.ters. It is expedient

to distinguish here two groups of problems:

I. Problems connected with the propagation of waves in a medium

whose parameters are changed only with time (nonstationary spatially

homogeneous medium).

II. Problems connected with the propagation of waves in a

medium whose parameters are changed bo~h with time and space

(noristationary spatially nonunif.-m medium). Although, in principle,

in both of the indicated cases there ic interest in the arb-.trary

law of the change in parameters of the medium, experimentally

realized situations of the case when parameters of the medium are

changed periodically corresprnd most closely.

Being interested here only in the fundamental side on matter,

we will consider for simplicity that the la,:; of the change in

S parameters of the medium is the harmonic law. Then for the spatially

homogeneous medium the vector of polarization can be represented

in the form

* ~P ,ArE~ -- At e2 jMtJ~-~t

- .(2.103)

+ complex conjugate,
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I
(where Q frequency of the change in the parameter), and for a spa-

tially nonuniform nonstationary medium

P= A ()E( -t')d' + e(1 t- L  - +

0 0 (2.103a)

+ complex conjugate.

Here k - wave vector of the wave of the change in the parameter.'

Equations of electrodynamics of media variable parameters are

simpler than corresponding equations of a nonlinear medium. Therefore

here, in any case for the periodically nonstationary medi, it is

possible to record the form of the field in the medium. Moreover,

exact solutions of equations of the type (2.99) can be obtained for

certain, indeed rather artificially selected, nonperiodic laws of

the change in properties of the medium (see, for example, works

[1i2-113], wher there is investigated the change in the amplitude

and frequency of the electromagnetic wave propagating in the medium

the parameters of which linearly or quadratically depend on time).

Let us assume that on the medium, the properties of which are

described by formula (2.103), there falls a plane monochromatic

wave of frequency w. Then the general form of the plane wave in

'If modulation of parameters of the medium is carried out by
the electrical field, using (2.100) and (2.101), one can determine
the frequency Q and characteristics of the tensor A according to the
assigned polarization and frequency w of the side field. For the
quadratic medium, obviously Q=j;k=k

A -A

M (r)=Jx (t',)A(') exp (- Q (1 + 1')) dt'.

'2' For a cubic medium Q=2, =2k, and

A AA4' e A:.. mt ) A (2 e"A ",p i- (21"'+ 21" 4. t")Jdtd,".
0o

1Let us note also that with transition from a cubic medium to a model
of the medium by variable parameters, in contrast to the case of
the quaaratic medium, the stationary part of the polarizability
should be modified

I! A A W y )+ J ( 1?*iw ij ) ( t- I - ) E (3 9( t -
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in such a medium is given by the formula

E(r,f)= AB (" (r)expi(o +n2)t. 1 (2.1011)

The fact that (2.1011) indeed gives the general form of the wave in a

periodically nonstationary medium it is easy to be convinced, using,

for example, the method of successive approximations. (In virtue of

(2.103) the wave of the frequency w excites in a nonstationary

medium waves with frequencies w ± Q, and these waves in turn excite

waves with frequencies w ± 2Q etc.).

If all waves, (2.104), are equivalent, substitution of (2.104)

into Maxwell equations leads to an infinite system of differential
(n)

second order equations for complex amplitudes En(r). However, in

concrete problems it is frequently not necessary to retain all waves

in the solution of (2.104). An especially fraitful means of the

simplification of the problem here, just as in the nonlinear problem,

is the preliminary estimate of the order of' smallness of different
A

terms in (2.103). In many cases quantity M can be examined as small
A
M-g. Then, in the solution of the boundary value problem of the

electrodynamics of a nonstationary medium, in any case for not

too large z(z = 0, as earlier, corresponds to the boundary) in

(2.104) it is possible to retain only the first two combination

frequencies (w + Q; w - S) and reject the others (their amplitudes

have an order of 2 , p3 and etc.).

Then the solution can be presented in the form

E(r~t)" E B1")(pz,r)expi((+n9)t (2.105)

(here m no longer exceeds unity and two), and further we can use the

method of derivation and analysis of truncated equations discussed

in § 3 of this chapter. It is not difficult to be convinced here

that in a spatial uniform periodically nonstationary medium, the

obtaining of stored effects (monotonic change in complex overall

amplitudes) in general is impossible.

'Complex amplitude B (n ) contains the phase constant of the wave.
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Actually, in accordance with (2.103), in a periodically

nonstationary medium the wave of the field of the form

E("'= A O'expt[( +ng)t-knr], (2.106)

besides the wave of polarization at frequency Wn=O +6, also

excites the wave of polarization at combination frequencies. These

waves have the form:
A'

PW+Q 0+0 M ( + n2) A( ) exp i [((o + n2 + 2) t - k, r] +

+ complex conjugate (2.107)

p M((o) (+n2)A(")expi[o + nQ-2)t--knr +

+ complex conjugate (2.108)

A A
Here M(a+nQ)= M(1')e-( )t'd - Fourier-component of the tensor M.

0

From (2.107) and (2.108) it follows that neither in the medium without

dispersion nor in the medium with normal dispersion do forced waves

of polarization have a resonance effect on the medium. Actually,

for both of the indicated cases cannot be simultaneously fulfilled

the relations k,_ k,; k,+C~k,. Therefore, truncated equations for

slowly changing amplitudes will contain in the right sides oscillatory

terms of the form:

.-", eieA( ex gi[(k , -- k.)

(e - unit vector characterizing, as earlier, polarization of the
n (n

wave E '), the presence of which prevents the appearance of stored

effects. In particularity, in a sufficiently extended peri ically

nonstationary medium, even for 0 > w larametric amplification

proves to be impossible (in application to the periodically transient

plasma this is shown in works [122]-[l23).

Another situation takes place in the case when the periodically

nonstationary medium is simultaneously and spatially nonuniform and

is described by formula (2.103a). In this case instead of (2.107)

and (2.108) we have:
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M-G n)A exp I f(co + nQ +I 2) t -

-(k%,+k.)rj+ complex conjugate (2.109)

A

p,,2 (n- (o + n2)AA " exp i [(I) + n2 -Q)t-

-(k,--k0 )rj+ complex conjugate (2.110)

If k,,-k 1;, k,-l-k 2 =k,_, waves of polarization (2.109) and (2.110)

have on the medium a resonance effect and thus can lead to stored

effects.

A specia) case of such resonance interaction is the case of

parametric amplificaion of two waves examined above with frequencies

W 1 and 2' which satisfy the relationship w,-s=% (in designations

of formula (2.1011) C(01=6; ()3=2). At the same time in a medium with

parameters variable in accordance with (2.103a) more complex multiwave

interactions are possible. The general form of the plane wave in

the medium whose properties are characterIzed by (2.103a) is given by

formula [compare (2.104)]:

E (r, t)= 1] E(n (r) exp i [(o + nS) t - nk , r] .( 1 .t

In certain cases instead of (2.111) another notation at which proves
to be more convenient (the complex amp-tude is in the form

B(n)(r)=C(n)Ce rr , where C ( n ) is the vector constant. Then instead of

(2.111) it is possible to write

E E(r, t) = expi[cot -- rrl T. C(') exp in19t - -k2r]. (2.112 )

The last expression is the result of Floquet theorem [1251. Actually,

in accordance with the Floquet theorem

,E.(r,1)= exp i [wt-rr] • 0>(Pt- k r).

and the sum in (2.112) corresponds to the expansion of function 4
in a series along space harmonics.

The general solution (2.112) should be substituted into the
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Maxwell equation; then from the condition of the difference from

zero of constants C(n ) there can be obtained the dispersion equation,

which connects quantities F and w.

Directing the wave vector k along the z axis and assigning

the specific form of polarization of the incident wave, using
(2.103a) and equations (2.99), we can record for the nondi.9persive

medium:
meim2 ( e - eg ( t-h )]E} (2.113)

Here co and Ei - scalars.

Substituting (2.112) into (2.113), we arrive at an infinite

system of equations of the form

co(r+nkL. (2.114)
• ; ( +ng)'~ ... 2 -

Discussion and analysis of the system of the type (2.114) is contained

in [126-130]. A general investigation of the dispersion equation

of the medium with variable parameters proves to be very difficult.
In specific problems, however, considerably simplifications are

possible which are based on the fact that the dispersion character-

istic of the real medium allows an effective interaction of only

a finite number of waves. Therefore, the infinite system (2.114)

can be replaced by the truncated system; with this the order of the

dispersion equation appears finite. Additional simplifications are

obtained taking into account the order of smallness of modulation

percentage of parameters of the medium (usually, el '

The character of stored effects appearing in the medium with

variable parameters depends on the relationship between frequencies

S1 and w. If w>, the monotonic change in amplitudes should be

treated, obviously, as a stored (with distance) effect of the

modulation of the high-frequency wave of a periodically nonstatioaary

medium (by the field of the low-frequency side wave).
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An example of such a situation will be discussed in Chapter V.

Let us note only that it is more convenient to describe the effect

of modulation in a time and not spectral language. Therefore, here

instead of (2.112) in certain cases it is expedient to look for

the solution in the form of a wave with modulated amplitude; here

instead of the system of truncated equations in ordinary derivatives,

one should examine one truncated equation in partial derivatives.

Cases w , Q and 2 > w correspond to conditions of parametric

amplification and conversion of the frequency. Here it is expedient

to examine the system of truncated equatio,s recorded for complex

amplitudes of different spectral components. Of course, these trun-

cated equations can be equations in partial derivatives; with such

a position of things it is necessary to encounter in problems

parametric amplification and conversion of the modulated signals

(see Chapter V).

§ 5. Surface Nonlinear Interactions. Reflection
of a Plane Electromagnetic Wave

from the Border of the
Nonlinear Medium

5.1. Formulation of the F.,oblem

In the preceding paragraph, with the classification of nonlinear

interactions, beforehand we were assigned values of amplitudes and

directions of wave vectors of interacting waves on the border of

the nonlinear medium. In reality, one should consider amplitudes

and directions of wave vectors of waves fall.ing on the border of

the nonlinear medium to be assigned. Therefore, with strict setting,

examination of interactions of waves in the nonlinear nedium should

be preceded by the investigation of regularities of the reflection

and refraction of waves on its border. Here there appears, thus,

the whole range of problems connected with the generalization of

formulas of Fresnel on nonlinear media. It is important to stress here

that inasmuch as on the border of the nonlinear medium the principle

superposition is disrupted in the generalization of Fresnel formulas

one should examine not only cases of the fall of monochromatic
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waves but also the problem about the interaction of waves of different

frequencies on the border of the nonlinear medium.

A strict solution of the indicated problems (we will subsequently

call them problems of "surface nonlinear effects"), Just as that

which took place for probj.ems on "volume" nonlinear interactions

discussed in preceding paragraphs, proves to be very difficult.

However, for the most practically interesting case of the weakly

nonlinear and weakly absorbing medium, it is possible to develop a

comparatively simple method of analysis of surface nonlinear phenomena,

which are based on the approximation of the assigned field. Actually,

nonlinear interactions, which determine regularities of the reflection

and refraction of waves, occur, obviously, in a very thin boundary

layer, the linear dimensions of which I have an order of thickness
rp

of several atomic layers and do not exceed, in any case the

wavelengths. Therefore, in a weakly nonlinear medium reactions of

harmonics and combination frequencies, which appear with surface

interactions, on generating waves can deliberately be disregarded;

the last circumstance is, as was already indicated, the initial

point of the approximation of the assigned field.

Below we will illustrate, following basically work [131], the

indicated method in the example of the problem on the incidence of

a plane monochromatic wave on the surface of a weakly nonlinear

quadratic medium.'

Let us consider the half-space filled by the nondissipative

quadratic medium whose nonlinear properties are described by the

tensor Xmm-p. Let us assume that the boundary coincides with ff

'Although, in principle, an analogous problem can be stated
for the cubic medium, the case of the quadratic medium in the
problem of surface interact.ns is the most important. The fact is
that in the surface layer of the cubic medium the potential function
is no longer symmetric, so that the polarizability of this layer
is described no longer by an equation of the type (l.17a) but rather
by an equation of the type (l.41a); the nonlinear polarizability of
the surface layer of the cubic medium is close in their characteristics
of such for a quadratic medium and is desoribed by a tensor of the
third, and not the fourth rank., (Experimental confirmation of this

fact was obtained in [31]).
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plane (x, Y), and let us direct the z axis inside the nonlinear

medium (II) (Fig. 2-2). Let us assuire that from the linear isotropic

medium (I) onto the boundary aL angle 0(n ) to the normal a plane

monochromatic wave is incident. The electrical and magnetic field

of the incident wave have the form:

'n' e-jnI A ("I expi (W - k("n r); (2.115a)

F. lnf) - (n (n)(n)br
H("k) = _ ) e,") A ") exp i (Wr- ki" ) (2 i115b )

a) b)
I,

II

g I e

I
Optical axis Ij le
of the crystal I

Fig. 2-2. Location of vectcrs in the
problem on the reflection of a plane elec-
tromagnetic wave from the boundary of the
quadratic medium: I - linear medium;
II - nonlinear medium; 0 - denotes that
the corresponding vector is directed along
the normal to the plane of drawing; a)
location of vectors for waves of frequency
o); b) location of vectors for waves of
frequency 2w, z' - edge of cubic crystal.

Subsequently we w,,ill be basically interested in surface nonlinear

effects in optically isotropic crystals -'V the class Td (precisely

in such crystais these effects are studie6 experimenta3ly in the

most de,;ail of all, see [202] and 5 3 of Chapter VI). At the
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saine time*, results of the conducted calculation, as one will see

from subsequent computations, after a certain correction can be

applied to anisotropic crystals of the class D2d. In the last case

we will assume that the direction of vector el) is selected specially

so that in the mediun one refracted (extraordinary wave) was excited.

We will consider further that the z' axis .n Fig. 2-2 is directed

alon,, )ne of the edges of the cubic crystal (or along the optical

axis f the uniaxial crystal).

With resolution of the problem on the reflection of the wave

from the boundary of a weakly nonlinear medium, the sequence of

calculation coincides with that accepted in § 1-3 of this chapter.

'.2. Zero Approximation. Reflection from the
Border of the Linear Isotropic Medium

in zero j =0 approximation the problem is reduced to the

investigation of the reflection of the wave from the border of

the linear medium. To solve it, linear Maxwell equations (I.1)

and the condition of continuity of fields on the border should be

used. For harmonic waves of the form (2.115) equations (I.1) can

be recorded in the form:

caH=c[kEj; we()E=-c[kHj. (2.116)

For a uniform medium without losses the reflected and passing waves
are plane. Fields of passing and reflected waves can be presented

in the form:

E =e 1' ) Ai P exp i (ot -- iP) r); (2.117)

El ejv l-)-x () P (2.118)

and corresponding magnetic fields can be recorded also Just as in

(2.115). All vectors e "),e"P), eOP) lie in one plane (see Fig. 2-2).

From the homogeneity of the problem in plane (- y) it directly

Afollows that:
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k(OTP)(2.119)

and, consequentl (all components ksy=0)

OPI n e
)  0

ki () -;'"(o)sin2 01. (2.120)

(Here e8how) and 8(1u)(w) - spectral components of the linear dielectric

constant of media I and II, which correspond to the assigned

polarization e" parallel to the incidence plane). Relationships

between the complex amplitudes of the incident, reflected and past

waves can be set from conditions of continuity of tangential com-

ponents of fields on the border. For the selected polarization of

the incident wave these conditions should be recorded for components

of the electrical field E1x=euA and magnetic field H,=H=-kA.

HI_.=I tPl _q ; Ex :,-o ==E. -+O. (2.121)

Noting that in accordance with (2.116), E-' c kH, equalities

(2.121) can be written in the form:

H-(O) + H(-) = 1 Q
"p);

".J . [H(n) -l(OTP)1 8 1 ," .0)) " "P. (2.122)'

Solving equations (2.122), we arrive at Fresnel formulas for the

wave of the chosen polarization

AI)'.-- . I ( (2) " " (2.123a)

-ST) (w).kin)"- 8"(6.k+) - (2. 12 3b ),A(OP ,Z A(). (2.,1,,,2,3,b)+..++
1 1.
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J
From formulas (2.123) there can be calculated the linear reflectiviuy

of the medium with respect to power, R

- [ o °)- J (2.124)

3imilarly there can be obtained formulas of Fresnel and for

the wave polarized perpendicular to the plane of incidence. For

the case of double refracting medium and geometry, selected in

Fig. 2-2, formulas (2.120) and (2.124) should be corrected; here

it is impossible to introduce el(o) (see [38]).

5.3. First Approximation. The Appearance of
Harmonics in the Field of Reflected Wave

In a quadratic medium the passing wave (2.117) can be distorted,

and, consequently, the spectrum of it can be enriched by harmonics,

2w, 3w, ... (the corresponding fields will be designated E2, E3 ... ).

The full field in the transition layer of a weakly nonlinear medium

can obviously, be represented in the form:

E1"P)  (MP)  .'p2 EnpflP) +... (2.125)

It is necessary to stress that here, in contrast to the problem on

volume nonlinear interactions, where we did not make, in general,

assumptions on the smallness of fields of harmonics or combination

frequencies but proceeded only from the slowness of the change in

them in space, the actual fields of harmonics can be considered

small. The growth of the order of smallness with the number of the

harmonic for surface nonlinear interactions is natural, inasmuch as

the m-harmonic appears in the quadratic medium as a z-C-ult of the

nonlinear interaction of the (m - 1)-harmonic with the field of basic

radiation. In the first approximation E"P)=EnPP+pE$"P), and calcula-

tion of the characteristic of wave E'P) can be conducted in the

approximation of the assigned field with the help of the following

equations:
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rot E~p~" ~ ,4P)
rot (2.126a)

i& (2w)  4 a )p) " 4A a2 ,roff P) .-. + ' (2. 126b)

where
A

P2. xePoP) eP[AP)j 2 exp i [2ot-

p ---pPexpI[20t-kPr]. (2.127)

The general solution of equations (2.126) is the superposition of

two waves of the frequency 2w - natural and forced [see (1.21),

(1.22) and (2.96)], the wave vectors and polarization of which are

determined by polarization p and wave vector k r ompelling wave ofp
nonlinear polarization (2.127) and by boundary conditions.

In accordance with (1. 45), kP=2 kMP); the direction of vector p

can be defined by well-known properties of' the tensor of nonlinear

polarizability Xmnm, (see § 7 of Chapter 1) and assigned polarization

of wave El Inasmuch as the general properties of symmetry of

the tensor Xmnmr are determined by properties of symmetry of the

crystal, along with the system of coordinates introduced in Fig. 2-2,

it is expedient to introduce also one more system of Cartesian

coordinates whose position of the axes is determined by the position

of the axes of symmetry.

Let us consider as an example a crystal of the Td type; as

was already indicated in Chapter I, crystals of this type allow

existence of tensor X. Let us introduce the system of coordinates

X19 Y? and z' connected with three axes of the cube. Noting that

according to conditions of the problem vectors Z,. knP) and ef " I

lie in one plane for components of vector e (np) along axes x1, y' and

Z', we have:

ej =-os0cosq; (2.128a)

ePP) -cos O sin; (2.128b)

sin0, (2.128c)
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where 0 -angle between the beam vector saP) and axis z', and 4 the

angle between projections of vector snp on plane x' and y' counted

off from the x' axis. In accordance with data of paragraph 20,

§ 7 Chapter I, for crystals of the class Td only components Xx'y, ., X'. 0'.

and Xz,.Y'x are different from zero. Therefore, components of vector

P2w in axes x ', y' and z' are equal to:

p2.) .2. .* [Ajp)] 2sin2O.sin(p; (2.129a)
Pp.,). r-" AP.;,.si,., (2. 129b)

2 2LPeJ' za .... * • [A v,)],Co s2Osi24. (2.129gc)

Let us note that these components have the same form for a

crystal of the D2d type and geometry of Fig. 2-2.

Thus, vector P in the examined example has components which

are both parallel and perpendicular to planes zo, kf"P). Let us assume

that axis Y' coincides with axis Y 4=10). Then p = y0 , the wave of

the nonlinear polarization, ip transverse and excites waves in the

medium at a frequency 2w (see Fig. 2-2b),

Field ."n) in the medium can be represented in the form:

ErP) e P) A P) exp i (2," - r) +
+= 'e -Z2e-402exp i1o/kr

is y.EP)1 2  xp i[2-kpr], (2.130a)

and the cunresponding magnetic field:

-i- [ kr') erP] A' exp i (2ot -" r) +
8 2*,.,.X,' , *, 2. [ 'Af l , )expi(2i-kr)

+[yk] --- , (2130b)
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Waves (2.130) can satisfy the boundary conditions only in the

case when in the vacuum there propagates plane wave of the form

W = e ° l) . AP1P ) exp i(2et'- k2°"P) r) (2.131)

(where in virtue of the selection of angle made abovc, vectors e P),

.e2 and y0 are parallel). The latter means that the appearance of

the wave of nonlinear polarization (2.127) in the medium should

inevitably lead to excitation of the second harmonic not only in the

field of the refracted wave but also in the field of the reflectod

wave.

The direction of wave vectors klo° p) and k(4 ) and amplitudes of

reflected and refracted waves of the second harmonic will be deter-

mined from boundary conditions. Thus, just as in the zero apIroxima-

tion (see (2.119)), for components of wave vectors along the x axis

we have:

kk P) = ko ) = e,, = P) (2.132)

(in accordance with the geometry selected in Fig. 2-2, all kfy = 0).

Using (2.132), one can determine angles 6 P) and Op ). Consider-

ing (2.120), we have:

3 O.p) ST(M) (2.133)

si ( f ) . , (2.134)

From (2.133) it follows that in general the direction of' the

wave vector of the natural wave of the second harmonic in a non-

linear medium differs from the direction of the wave vector of the

refracted wave of the main frequency and, consequently, and wave of

nonlinear polarization; erOe00 only when ( The
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relationship between the angle of incidence OV)' and the angle erl
characterizing the direction of the wave vector of the second har-

monic, radiated in the linear medium, depends, as follows from

(2.13 4), on the dispersion properties of the latter. In particular,

if the linear medium is nondispersive, the "reflected wave" of the

second harmonic propagates in the same direction as does the

reflectF1 wave of the main frequency.

For waves polarized perpendicular to the plane of incidence,

the relationships between amplitudes can be established from the

condition of continuity on the boundary of components E = E and H .ii

ZI El._O;. •HJl"H5I3 .... (2.135)

From the first condition of (2.135), designating P= .,i

X [AfNP) P, we have:

• V) =a'A ) Y _ I, (2.136)

From the second condition of (2.135), using relation (2.116), we

have:

-A~' rP) Ir(.2c) 60osO) =AP) 1 /8e") (2cc) cos j"P +
+ -2: ' :V8Vl/()cosoPP). (2.137)

From (2.136) and (2.137) for A&"P) we have:

V78e(20 ) Cos .a (O) CoOO)

x V()( )cosg"-P'ti/"(I) (o coso, (2.138)

0" ~ 5) (23) Cos O + a((2o 01"p)
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or, multiplying the numerator and denominator by Vef')(2&)COS 0.1)+

+y'"p)/' cosO "P) and noting that according to (2.133)

" % f')( ') cs' "P --z%' ' () cs' f"P = ')(2m)-et ") (w), (2.139)

we arrive at formula:

r , ,. _ -

XApv) P X

h" (20) cosapu +Vt') (2) Co m

The amplitude of the passing wave can be directly calculated from

(2.136) and (2.140).

Let us note, first of all, that if the amplitude of the passing

wave, as can be seen from (2.136), depends on the relationship of

dielectric constants dl)(2o) and A )(w) (when eA')(2)=e )' (o) the wave of

nonlinear polarization has a resonance ePfect on the medium, and

stored effects are possible), the resonance term of the form

in general, does not enter into expression (2.140).

Using (2.140) and (2.123a), it is possible to introduce the
"nonlinear" reflectivity of the quadratic medium R(K,,, which char-

acterizes the ielationship of energy fluxes of the incident wave of

basic radiation and "reflected" wave of the second harmonic.

.11 = I/sP2'4coseooP). I 4oP!2 (2.141)

' The last circumstance can have a definite interest for the
creation of nonlinear optical devices using skin effects.
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In order of magnitude

AP]2 1(2. 142)

For the crystal KDP = 310-9 CGSE (see [41), and with a field of
'105 V/cm the relative intensity of the second harmonic, appearing

on the border of the nonlinear medium, comprises ni0- 12 of the
=2.6.10-6

intensity of the basic wave. For the crystal GaAs X123 .10

CGSE (see [180]) and under those same conditions R(Hn) 10- .
Expression (2.140) permits analyzing the angular structure of the

!i "reflected" wave of the second harmonic; let us note only that in

the investigation with the help of (2.140) the dependence of A v)

I on Oil should be considered a great depindence of components of the

vector of nonlinear polarization P2w on the angle of incidence of

the wave of the main frequency (see (2.129)).

For surface nonlinear interactions, in exactly the same way as

for the volume interactions, of course, the general energy relaticns

of the type (2.42)-(2.43) are fulfilled; however, for their deriva-

tion it is impossible to use the approximation of the assigned field.

Although the example examined in this paragraph is one of the

simplest, it visually illustrates the method of resolution of
problems on surface nonlinear interactions in the approximation of

the assigned field. In the end, calculation of the field of
"reflected" waves on combination frequencies in the linear medium is
reduced to the problem on radiation of the assigned wa,,e of polariza-
tion p2j or in a more general case, PNCX" , which propagates in the

nonlinear medium. Above we examined the case when the vector of
the nonlinear polarization is perpendicular to the incidence plane
(only one component P'P21 was considered). For an analysis of the
general case, it follows to examine still the problem for which the

vector of nonlinear polarization lies in the incidence plane L
P 4 0). In this case vectors erP) and e P} also lie in the incidence

plane. Relationships between amplitudes AO, ANp) and A ") can be set

if one were to use boundary conditions of the type (2.121).
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§ 6. Space-Time Analogy in the Theory
of' Nonlinear Systems

The application of methods of approximation of the theory of

oscillations of nonlinear systems with concentrated constants to

the investigation of wave processes in nonlinear dispersive media

permits many problems on nonlinear waves to establish the time

problems-analogies in correspondence.

Actually, the truncated equations describing the propagation

ay.d interaction n of the unmodulated waves are the system n of

ordinary differential first-order equations for complex amplitudes.

A system of precisely the same type describes oscillations in a

weakly nonlinear oscillatory system with n-degrees of freedom. Let

As turn, for example, to the problem on the propagation of an

unmodulated wave in a linear dissipative medium, examined in 9 2 of

this chapter. In accordance with (2.20) the change in the complex

amplitude A in space is described by the truncated equation:

A
----m6,4 0, where 8,= A .A (2.143)

A 4
ckcosks.cosuo

It is easy to be convinced that precisely the same structure is

seen in the truncated equation describing-the process of the change

in time of amplitude of free oscillations in the resonator. Actu-

ally, let us examine the equation of the linear oscillatory circuit

close to the conservative. The equation of such a circuit has the

form

i+ 261i+ QxO. (2.144)

If 8-p' (p as previously the small parameter), the solution of

(2.144) in the first approximation can be sought in the form

x-A(p)expi o. Substituting this solution into (2.1411) and rejecting
2

terms vP2, we arrive at the equation:
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6,4 0,(2.1415)

coinciding according to the formula with (2.143); the process of the

change with time of the amplitude of free oscillations in the reso-

nator close to the conservative occurs in exactly the same way as

the change in space of the amplitude of the harmonic wave propagating

in a weakly absorbing medium.1  Comparing (2.143) and (2.145), it

is possible to es':ablish the direct connection between variables and

9i parameters in problems - analogs. The independent variable t in the

time problem corresponds to coordinate z in space, frequency w- wave

number k, initial conditions in the time problem - boundary value

problems in space. The analogy can be widespread on nonuniform

problems: forced oscillations in the time problem correspond to

effected side fields to forced waves (see formulas (2.92)-(2.86) in

space. What has been said pertains equally to nonlinear problems.

The boundary value problem on the generation of the second harmonic

in a dispersive medium, described by equations (2.39) when w1 = W2 =

= wand w3 = 2w, can be established in correspondence to the problem

on free oscillations in a two-circuit system, the resonators of which
are tuned to frequercies w and 2w and are connected by che nonlinear

reactive element. Let us note that the latter was examined as long

ago as in the 1930's by A. A. Whitt and G. S. Gorelik [136].

The list of nonlinear analog-problems can easily be expanded.

What has been said, however, denotes that in the theory of

nonlinear oscillations of systems with concentrated constants already

there are contained solutions of all problems appearing in the theory

of nonlinear waves in dispersive media. First, nonlinear wave

problems in general are considerably more diverse than the oscilla-

tory (see below). But this is not the only matter. The mc.t

interesting practically, in nonlinear optics, for example, are

boundary value problems. Their analogs are, in virtue of that

'Let us note that the space-time analogy for linear systems
was examined in works of P. Ye. Krasnushkin [210].
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mentioned above, problems on transition processes in systems with

concentrated constants. However, the independent interest of the
iatter, as a rule, is small and therefore in the theory of nonlinear

oscillations the main attention is given to forced oscillations.

In connection with this it follows to indicate the distinction

between the energy relationships, which usually occur in the theory

of nonlinear waves in dielectrics [see, for example (2.43) and

(2.57)] and in the theory of nonlinear oscillations of systems with

reactive nonlinearity. In the last case usually we are interested

in the distribution of energy with respect to frequencies in con-

ditions of stationary forced oscillations; therefore, here relations

of the type (2,57) take place not for increases but for total

energies corresponding to different oscillations (see, for example,

[104], [107]). Distributed energies of forced oscillations in th(

steady-state operation does not depend on initial conditions. It

is necessary to consider also that stationary waves, the existence

of which appears possible with a special form of the selected

boundary conditions [see, for example (2.72)], are not of course,

aLalogs of tho stationary forced oscillations.

The role of the dispersion characteristic of the medium, the

analysis of properties of which permits in a nonlinear spatial

problem determining waves essentially participating in the process

of nonlinear interaction, in the temporal problpm is p].ayed by the

resonance characteristic of the oscillatory systen. Here it is

possible to be limited to calculation of oscillations of only those

frequencies for which the resistance of the oscillatory system is

not too small, i.e., for which the system reveals noticeable resonance

properties.

Within the bounds of the indicated space-time analogy it is

natural to treat the appearance of growing waves in the nonlinear

medium as "instability in space."'  With this the regions of

KIn the theory of plasma waves the term "convection instability"
is also accepted [135]; "instability with time" is then called
"absolute" instability.
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instability in space for the system of ordinary differential ec.a-

tions of the type, for example, of equations (2.60) can be found

with the help of the usual criteria of stability, developed in detail

in the theory of oscillations. Such an approach proves to be very

effective, for example, in the theory of parametric amplifiers of

the traveling wave (see [133, 134], and also Chapter IV of this

book). From this point of view the parametric amplifier of the

traveling wave is, obviously, a spatial analog of the parametric

generator with concentrated constants. The space-time analogy can

appear useful in the search for new nonlinear effects in optics,

since it permits setting in conformity the nonlinear waveguide

analogy-systems with concentrated constants studied thoroughly in

radio physics. In proceeding in this way, it is possible to con-

struct, for example, a wave analog of the phenomenon of the forci.ng

of oscillations, which plays a very important role in radio engineer-

ing of systems with concentrated constants. The wave analog of the

forcing is, obviously, the change in phase speed of the wave prop-

agating in the medium with dissipative nonlinearity, which is

connected with the effect on the medium of the external field.

Examples of a similar type can be multiplied: it is possible to

construct, in any case, theoretiically, wave analogies of such

oscillatory phenomena as the mutual synchronization, asynchronous

interactions and so forth. At the same time, on the path of their

experimental realization considerable difficulties can be encountered.

The use of the space-time analogy proves 1o be very usef7ul not only

in examining the dynamic but also the statistical wave problems.

For example, problems on the influence of side fluctuating forces on

the course of nonlinear interactions in dispersive media have

much in common with problems on the influence of fluctuations on

nonlinear oscillations in systems with concentrated constants. In

particular, in the investigation of equations of type (2.86) and

(2.91) for those cases when force I(t, r) is accidental, methods and

results of works on fluctuating phenomena in self-oLci3.lation systems

with concentrated constants prove to be very useful (see, for example,

[137, 138, 56]).
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In conclusion one should once again stres9 that everything

wich has been said pertained to wave problems on the propagation

and interaction of unmodulated waves moving in one direction.

In the general case the nonlinear waveguide problems are much

more numerous than the oscillatory; the latter is connected with

the fact that in waveguide problems there are two independent

variables (t and r), and independent variable r can be both increased

and decreased (in interactions both direct and backward waves can

take part).

As the simplest example of the problem, which does not have a

direct analog in the theory of oscillations of systems with con-
centrated constants, it is possible to indicate, for example, the
problem on the propagation of a modulated wave in slightly absorbing

linear medium [see equation (2.30)]. The indicated equation should

be solved with the boundary condition, set at z = 0 and having the

form A (pt,0)=o(ji), i.e., with the boundary condition dependent on

ti~e small parameter. In the theory of free oscillations of systems

with concentrated constants such a situation is impossible.

§ 7. Generalized Truncated Equations and Laws
of Conservations for the Nonlinear

Medium with Temporal and
Spatial Dispersion'

Although the truncated equations derived in §§ 2-3 of this

chapter permit solving the majority of problems appearing in the

electrodynamics of the weakly nonlinear dispersive medium, in

Ii certain cases there is interest in their generalization in the case

of the medium with spatial dispersion and fields somewhat more than

that of the general form. Such generalization is the subject of

this section.

We will assume that the medium is spatially uniform. This

means thaz parameters entering into the expression for the vector

1Yu. L. Klimontovich wrote § 7.
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of polarization of the medium do not depend on the coordinates.
Furthermore, just as in §§ 1-6 of Chapter I, we consider that

parameters of the medium clearly do not depend on time, i.e., a

temporal homogeneity takes place.

Under these conditions the expression for the vector of

electrical induction

D (r, t) ff g (r, t P t"

can be written in the form:

•; D, (r, t)= dvjdrjLj(zrr)Ej (t -,lr rj).{ +

+ dl drj2drdr21 ,,~v (;,i,r 3r2)E1 t-rt, r-rl).Ek(I t-~,

-rz--Q,)+ &Id ad dr dr2 r2 )<" .

I IkI (TI, T2, T3, ri, rs, Q • El (t-r,,r-rI.Ek(t-r,'-r,,' r-- r,)Q
( ,- (2.146)

From the twice repeated indices summation is assumed.

When Xij=O and @ijk= 0,. hence we will obtain the well-known

expression for the vector of induction of the linear medium [149].

Expressions given in the introduction of §§ 5-6 neglectingth4 -^ ^ " . .

the spatial dispersion, follow from (2.146) uilder conditions

6 ,c, r) = I (r) ;
X ! (X, 11, r~ -Z:(v,') 8(r) 6 (r') ( 2.147 )

etc.
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There appears the question as to what measure expression

(2.1.46), correct for the spatial uniform medium, can be used for

crystals. In fact the crystals are not spatially uniform, since

ttice points are equivalent to remaining points of the crystal.

Expressions (2.146) can be used for the crystal only in the

case of a weak spatial dispersion. This takes place if the wave-

length is much greater than the lattice constant a, i.e., a/X << 1.

For the optical range this condition is well fulfilled. (For more

detail on this see, for example, the survey of V. M. Agranovich

and V. L. Ginzburg '[150]).

In the case of weak spatial dispersion, the tensor aj(w) can

be presented in the form (see also [149]-[150]):

, -4 s5 1 (,k)= !j . (2.148)

Tensor ViA is different from zero only in the optically active

crystals. Conditions of symmetry of tensors ej,(w) yJk(o,) and aiJk(w)

are determined by relations resulting from the condition of symmetry
of the f ull tensor aij i) (wj , ,k )= i ( -k)

We will assume that the term, containing Yuk has the same order of

magnitude as does the imaginary part of the tensor 8A).i.e., the

order P. Therefore, in it dissipation can be disregarded. Under

this condition tensor Vuk is real.

j Tensor sa(,k)-can be presented in the form:

I! (ca, k) =) + It,,+(o(, k), (2.149)

where s; and a- real and imaginary parts of the tensor el.

For the crystal
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6(Sk)=.s;I(0) + u51 1 kkl; e. (€o, k) = 8.@ k);I
6;,(,,,k) =i,' (o) + ,(w).- k, . (2. 11I9a)

Below we will examine the general formulas correct for any

media; therefore, subsequently we will use formula (2.149), not

assuming that 8P1 and e~ are determined by formulas (2.149a).'

Let us note still that due to the smallness of the spatial

dispersion in crystals, it can be disregarded, in nonlinear terms

of formula (2.146), i.e., consider that tensors Xuk and 011k, depend

only on frequency arguments.

Instead of equation (2.2) for E, here we will use directly the

system of Maxwell equations:

rot H= - + .I irt), divH 0;(250
7 € t C 210

rotE =--LH div D =4n (r, t) (2.151)

I, q- ,ensities of side currents and charges.

In combination with expression (2.146), the system (2.150,

2.151) is closed.

In accordance with that said in §§ 1-2 of this chapter and

introduction, we will assume that the spatially temporal process is

characterized by rapid and slow changes of all functions, and we

will present fields E and H in the form

Er E (pt, pr, tr); H(r,1) H(pt, pr. t,r), (2.152)

where B - small parameter, 0". - rapid variables.

'For the contemporary state of linear crystalloptics, taking

into account spatial dispersion, see [213], [150], [2141, [215].
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Let us produce decomposition into the Fourier integral accord-

ing to variables

E(t, ttrt,) r) = (ti 2--'J pd K dk r, o , k )e '* (2.153)

H(pt,pr, t, r) = )- d d)).pdk'H(, jr, w, k)e -  (2.154)

In these formulas the Fourier-components are themselves slow

functions of coordinates and time. Such decompositions are expe-

dient, if spectral. functions are different from zero only at

sufficiently great values of w and k, i.e., there should exist wmin

and km. r, which satisfy 
for example, conditions

o) , E ( t r k ) >> .",. > ( 2 .1 5 5 )

Let us obtain equations for slowly changing functions E(pi, r, t, k);"

H(d, tr, wk) (truncated equations). For this at first let us find

the expression for function "(1 t, r'o, k),,

Just as everywhere, in this book we will consider that non-

linear terms in expressions (2.146) have the order i, and we will

present D in the form of two parts

D -- 1) +D (-)t (2.156)

which correspond to the linear and nonlinear parts.

Let us write functions D(0 ) and D (H ) in the form of (2.153).

Since the nonlinear terms have the order p, then in obtaining the

expression for D (pt, tr, (, k) correct to v we are not able to con-

sider in (2.146) the dependence of field E on slow variables. As

a result, from (2.1116) we will obtain the following expression (in
A

order not to .limit community let us hold arguments k at tensors X

and 6)

64



D') (pt, pr, w,. k) = - - (do'dX,,( o, I. 0)', k') X*

XE(o) -- ', k-k').E,,(,k') +

X E1(a -i i';- k'). E;(, - i?, k' - k&). E, (),' k' (2.157)

Here

dAt d 2 rdrh(%r,;,rtr)e (2.158)

and similarly there can be obtained the formula for Oilki.

In order to obtain the expression for D(A)(g, #,o, k), we will

substitute into (2.146) decomposition (2.153) in functions of the

form: Ej (I V -), .-(r-r), ,'k), expand in series with respect to T 1

and r1 and limit ourselves to linear terms. As a result we will

obtain the following expression:

ak
-, L .~E(id.pr, ok). (2.159)

Using expressions (2.157, 2.159), we will find the expression

for the Fourier-component of function 'd(rt)/'

O . h -(D(-) + ) + -D( (t, pr, k). (2.160)

Thus, in expression (2.160) we are limited only to terms "p and

reject terms of a higher order of smallness with respect to p. As

was noted in § 2 of this chapter, rejected terms in certain cases
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can appear essential. The necessary refinements of the method of

successive approximations in these cases are analogous to those

developed in the theory of nonlinear oscillations (see [53], [511],

and also § 2 of this chapter, where these methods were used in the

conclusion of truncated equations of the anisotropic medium).

From (2.157, 2.159) in a zero and first approximation with

respect to p we will obtain the following expression:

)\ /,&* . ,u =-(1)6/.O, k).E1F 4I.,r, O)k.(o) \(2.161)

(-.Dl ..) =- (a,, -.L --o,--L-L)E ,.t j .o, k) +

(2.162)

Let us note that expression (2.157) for D("E) by changing the

variables and introduction with the help of the delta functions of

additional integrals can be written in a more convenient form:

DW (wk)= ( d o dkdk 2X6(C--.,--,).8(k-k-k) X

{I XXIk (, k, o2 , kc).E 1Q(1, kcr) Eh(wo, k2) +F (2 2.16 3)
(2.)"(2.163)

+ d2io~ dcaid do)Akidkadkt8 ()(o --w1 a')k-kik4 3)X

XOj~j(c, k, wo2 + 3, k2 + k3, (3, k,)E((,ok)-E(o, k,) ) (o3k3).

From this formula it follows that the integrand expressions are

different from zero only upon fulfillment of these conditions:

it= ='+w, k=k+kl (2.164)

in quadratic and

6 O=+(02+(03, k=kl+k,+k 3  (2.165)
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in cubic terms. In quantum language these conditions express laws

of the conservation of energy and impulses of interacting quanta.

Now it is already easy to obtain equations for the slowly chang-

ing Fourier-component of intensities E and H.

In the zero approximation with respect t: v from equations
(2.150, 2.151), considering (2.161), we find

IkHjj- --- 8;e(w,k)Ej. kH=O; (2.166)

IkE], "- He kie a;Eo- . (2.167)

Equations of the first approximation can be written in the

following form

c ((2o1H) ()0 e &)D ')-"

+ w; + 4x/ ( 2.168)

C rot1,E OHt -(2.168a)

-/t.x,.(., p-, imT t , q 4.); ( 2. 169 )

" LH-o. • (2.170)

Here it is assumed that quantities I and q are of the order i.

Other possibilities are analyzed in Section 4.2 of th4 s chapter.

Equations of the first approximation permit obtaining the dispersion
equation and establishing the connection between vectors E ( pt,r, ,k)

and iaz(t, r k),

From the first two equations (2.166, 2.167) we find:

[kjkEJ] I + j-,E =O. (2.71)

If, Just as above, we use the unit vector e along intensity E, then

from (2.71) there follows the equation
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k O+-e8u, =0,. (2.172)

which connects the frequency w and vectors k and e.

For the isotropic medium tensor ziq is determined only by one

vector k and therefore can be represented in the form (see, for
example, [149]):

gill (6),k) =( tjkk
*, I e,.(o). k)+ kh , k), (2.173)

where $, and LI -transverse and longitudinal dielectric constants.

.)r transverse waves eLk,eIsuej=E. and from (2.172) the well-known

dispersion equation follows:

o (o, k)- ck =0. (2.174)

For longitudinal waves e-llk, and from (2.172) we find:

k) = 0 (2.175)

Let us examine in more detail eouations of the first approxima-

tion. First of all, we will write the law )f the conservation of

energy. 1 For this we will multiply equation (2..68) by E!, and

the complex conjugate equation (2.169) by H* and subtract the second
from the first. Using equations (2.170) and the well-known vector

identity

div [AB] = B rot A- A rot B,

we will obtin equation (we omit parameter P):

'See [38], [194], [218], [219], [233] on laws of conservation
in a linear anisotropic dispersive medium.
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1-.(H2 + E, (;)E= - ReEHI +
a.x at \. 'aX 6 ~i

+ E t'E , I '- (D(-). £*) -
Ok 4X

,Z ,s;iE,--ReIE.. (2.176)

Let us introduce the designation for magnitude of the electro-

magnetic energy of the anisotropic dispersiv medium, arrived by

given w and k.

U p .w ,+ E , -- ,( 2 .1 7 7 )

The first two terms of the right side of equation (2.176)

determine the energy flow taking into account spatial dispersion;

the third one determines the change in energy due to the nonlinear

interaction; the fourth - thermal losses and the fifth - work of

the side current.

Using equations of zero approximation (2.166, 2.167), we will

obtain:

H = [kE ; [EH*]=-" [E [kE*]]." (2.178)6) 6 )

These relation, permit excluding the magnetic field strength from

equation (2.176) and to writing expressions for energy and energy

flow in the form:

']' + a d O "sB (2.179)

-i ] k', (2.180)

To obtain tho last expression in (2.179) equation (2.172) is used.
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From these formulas let us find the expression for group speed

in the anisotropic medium, which is determined by the relation

I-e

Sv 6UkM U. (2.181)

"'k -* (ke))-ca' 4- (i; el ,c)
Vosg= a (2.182)

Using the last formula, it is possible to write the evident

expression for the beam vector s defined by formula (2.9).

Let us note that expression (2.182) for v can be obtainedrp
airectly from equation (2.172). For this it is necessary to

differentiate this equation with respect to k and to solve the

equation obtained by such means with respect to 3w/ak. Here we

obtain direct proof of the parallelism of vectors of energy flow

S and vector of group speed D/Dk (compare with the proof in [38]

Russian page 402).
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The beam vector s can be standardize, for example, in such a

manner so that the following condition is fulfilled:

ck
Sn=l, where It (2.183)

(compare with formula (2.9). In the absence of spatial dispersion

the thus standardized beam vector can be recorded in the form

k-e( -e) [e[kell (2.184)
'" -(.e) (ke) [nel Ike]

The penultimate term member of the right side of equation

(2.176), which determines damptrig, can be presented in the form

-y(,,k).U, (2.185)

where 1o(,k)- damping decrement in the anisotropic dispersive medium.

It is determined by expression

y( k) = ,;, (2.186)

Let us examine certain special cases of formulas (2.182, 2,186)
for the group speed and damping decrement.

In the case of the isotropic mediui, tensor eij is determined by

expression (2.173). Using this expression, for transverse waves

from (2.182, 2.186) we will obtain

' " " Re C(, k)
20 k- 0 VO /mle, (o, k) .

Y.= ;Y. 'a (2.187)
0 e(tk) k))

{
Appropriate expressions for longitqdinal waves have the form

Re et (0" 6) m l (,)
-  • - , Im , (w. k) (2.188)
'5"R;s.& k) .:-Re e i '(w,, k)
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In deriving these expressions we used the dispersion equation

(2.175) for longitudinal waves.

Without spatial dispersion

vr=Oa (2.189)

Finally, in the absence of polarization, when 8,, from (2.189) we

find v' -

Let us return now to equation (2.176). Using designations (2.179,

2.180. 2.181, 2.186), let us write it in the form

aMi

-- y(ca, k) U-- -- Im (D(u ") E1 -,RelW. (2.190)
4j%

Let us exsanine the general properties of the right term of the

right side of this equation, which describes the nonlinear int.raction

of the waves. For simplicity ;.e will examine the case of the

quadratic medium. However, general properties of the nonlinear

member established below remain accurate in general.

'ector D "A) is determined by expression (2.163). In this

expression it is possible to use expressions for tensors Xjk.
and 011, neglecting the dissipative members, since according to the
condition the actual. dissipative terms of the order p and terms of

tne order 21 will oe disregarded. Therefore, tensors Xrik 0i.iJnt

which enter into formula (2.163) for D(z'u), possess the property:

ilk( , o , k, k) = iOk ((a, c', k, k') =

(2.192)
7 2k a)', -j k, -k).

o) k k'Vkj =o, 01l,, ) k, W', kj)
o 8kt ( - , -- e,--o, -k, -k*, - - . ( 2.192 )



Let us examine' the integral fIm(D(")'E')diok. Leaving only

the quadratic term from (2.163) we will obtain:

( .) 4 Jim (D(')E)dock= ' -Im ddo' do'dkdkdk x(2n)' (29)12

X'E (, k).Eio', k').Ek (o", k". (2.193)

Here and below instead of O , 2, k2,k, in (2.163) we will

use designations o', C° k, k', kv.

Let us replace in (2.193) variables of integration a, 0), ', k, k',k""
I for-,-'--"-k-kk .  We will use properties (2.191) of

the tensor (2.191) and consider that the Fourier-components possess

Wproperties:

£* ( k) -- -- ,-k).( 2. 194 )

As a result we will obtain that the integral in (2.193) will turn

into a complex conjugate. The imaginary part of the complex

expression, which possesses property a+Ib-a-b, is equal to zero.

Thus we obtain the first important property of the nonlinear term:

Im D(-) dodk = 0 (2.195)

Below it will be shown that this condition ensures the fulfillment

of the law of conservation of the number of quanta in the nondissi-

pative medium.

Let us now prove the second property of the nonlinear member:

w D(-) t" do) d.= 0, (2.196)
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which ensures fulfillment of the law of conservation of electromagnetic

energy in the nondissipative medium.

For the quadratic medium from (2.163) we obtain

X J -- 2I)' - kd m' kk'dk X

XE* (w, k).E V',k')Ek(",k").. (2.197)

By means of replacement &-Jo',k'-*k",-j, k we are convinced t ! t under

the integral in (2.197) it is possible to consider

%ilk (wk, ce, k ) = %ik (o), k, o', ) (2.198)

(Let us remember that frequency permutable relationships for tensors
and X coincide).

Let us consider the case when calculation of the spatial

dispersion is not essential. Here it is possible to use the result

of §1-6.

From formula (1.131) it follows that tensor xjA(,T') does not

change with replacement of i-k, r-T, i.e.

( ) k It (2.199)

Substituting this formula into the second expression (1.84),

we will obtain the useful equality:

- : ')(2.200)

Let us make in (2.197) at first the replacement e-- k-.-,

and then i-k Using formulas (2.19 4, 2.200, 2.191), we will obtain:

'%,Jh (, ) E, (o, k) .E1 (o', k') . , (or, Ic") =

"-"X, k(',BL (o;?, k").E1 (a:,', k').E;(o, kc) =

.- (o, . (w, k) E, (a'., k ( k") (2. 201)
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Producing now replacement -.--i, k-+-k', and then i-+/, we will
obtain by the same means

@,,,) E ) i ((a. k')E , k-) -
& (o),W E, )(),.'), k) , (". Ek (a')...

(2.202)

Using formulas (2.201, 2.202) and equality (2.198), we can

record expression (2.197) in symmetrized form:

' rmD(-'E'"k= d2n)T.4dd'dkdk'dk'X

#, k). ). k '). (2.203)

This expression is equal to zero, since

In a similar way we can prove the correctness of equality

(2.196) and for the cubic nonlinearity. In order to generalize these

results on the case when calculation of spatial dispersion is

important, it is necessary to prove the accuracy of equality:

/i k, W') k o )', , k'9. k), (2. 204)

which is a generalization of equality (2.200).

Condition (2.196) expresses the law of conservation of energy

with nonlinear interactions. Let us stress that this equality is

valid when in nonlinear terms it is possible to disregard the

dissipation.

Under those same conditions it is possible to prove the accuracy

of equality:
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Jk (D" ' E')d odk =O, (2.205)

which expresses the law of conservation of momentum with nonlinear

interactions.

Let us prove this equality for the quadratic medium. For this

case, using (2.163), we will obtain:

fk(D(1') E)d(. dk=-- A ddo)'dkdk'dk'X

x (k -k' -k)8(o-o' -(")6(k-k' -k")Xlk((,') X
X E, (a), k) El (e, kW) E, (W, k). (2.206)

Using properties (2.200) of tensor Xtjk' we can record for the

medium without spatial dispersion of equalities analogous to

(2.201, 2.202). This permits presenting expression (2.206) in

symmetrized form:

S (D("'.E)d)dk - L 3' do Ad6" dcv" dkdk' dk- X

X 8((o -c' -c").k.6(k- k' *- k.)X,, (), k,a", k').
E1*(% k).EA(O', k') Ek(co0, k). (2.207)

Hence, considering that

(k--k--)(k-k'-k=O,

we arrive at the equality (2.205), i.e., to the law of the conservation

of momentum with nonlinear interactions. For generalization in the

case of the dispersive medium, it is necessary to prove equality
(2.204).

Let us return to equation (2.190). Let us introduce the function

hN (pt, pr, ak) t- ---UPr, o), k) ( 2.20o8)

76(2n)4h
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which is the generalization on a nonstationary and nonuniform case

of the function, which determines the average number of quanta with

given (o, k.

We will multiply equation (2.190) consecutively by ), |, k/O

and integrate with respect to w, k. Using the designation (2.208)

and using properties (2.195, 2.196, 2.205) of the nonlinear term

in equation (2.190), we will obtain three equatiops:

4NSw k + SVrP Ndod A -2(o),k) NdodkA
!L dcodk (2.209)

t(2t)j J b"

1I v ReIE'do)dk. (2.210)
1kdS)Vpk1, ld SY(,.).c~ok

)

(2n)6 (o

These equations constitute, the equation of balance of the

number of quanta, energy of quanta, momentum of quanta respectively.

It is possible to write a fourth equation for the angular

momentum

, [nrk] N-dk

If the medium is nondisbipative, i.e., Y=0 and the external

current is equal to zero, then equations (2.209-2.211.) express three

I laws of conservation: numbers of quanta, energy and momentum.

if, furthermore, function N does not depend on coordinates,

then from (2.209-2.211) we obtain three laws of conservation:

JN dca dk = const; f ia) Ndo)dk =const;

AkN&dk = const. (2.212)
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If, conversely, function N does not depend on time, and the

change in space occurs only in a direction of the unit vector z0 , then

from equations (2.209-2.211) there are three laws of conservation

of flows of quanta in the direction z0 .

Expressions for the flow of the number of quanta and energy

of quanta have the form

OZVrpNdodk = -- dodk = const; (2.213)S(2n)' j ha)
hlzv-p d SzoS d(od A const"

zv d =(2n)' f (2.214)

Vector S is determined by expression (2.180). Neglecting the

spatial dispersion S= ±Re[EH*], expressions (2.213, 2.214) turn into

Re .I' dodk = const, Re I zoEH*] dodk = const. (2.215)

Let us examine in more detail the equation (2.211). When Y=1=0

we will write it in the form

-k d)d , = 0.. (2.216)

The tensor of stresses Sij is determined by expression

S11  k, .dwdk =hkvjNd cl A. (2.217)

Neglecting the spatial dispersion

I I _______ _ _
Utl 4(2x).fJ -a~K

when elk.
S * f E-!-lSl do dk.
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Let us clarify the condition under which equation (2.37) can

be obtained. For this with the help of equations of aero

approximation we will exclude H from equations (2.169, 2.170). Ab

a result we will obtain equations for complex amplitudes EtV,"Pr,o),k);

8 a (rot kE + [k rot_])-ca =
w o t 6) k 8r

_(8 3+I( W 0 (2.21.8)

In this equation we multiply scalarly by E, take the real part

and use designations (2.179-2.182), then we will obtain equation

(2.190). Here the vector identity (2.21) is used.

In equations (2.218) Dj"') is determined by expression (2.163).

Due to the nonlinearity waves with various w and k are linked. There-

fore, equations (2.218) actually represent an infinite system of

integrodifferential equations for amplitudes Ei with different w and

k or for an infinite number of waves. It is essential, however that

under certain conditions the solution of equations (2.218) can be

presented in the form of the sum of a small number of waves.

Let us consider the case of quadratip nonlinearity. Let us

assume that function E1 (pt,rprw,k) is different from zero only in

three points of the four-dimensional space w, k, connected by

conditions (2.33, 34)

)1 + ("S=(3; k,+ k,= k3. (2.219)

Function Eppr,o),k) can be presented in the form

E (2t)' ( (A -w).6 (k-k,) t AJ).8 ((-o2).-(k-k)+

+A(3). c-o).6(k-k3)) (2.220)

Let us substitute this expression into equation (2.218). We

will assume that value w, k in (2.218) is close to wl, k1. Here
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values (,1, Oo 0, k, k2, k3 are such that

m.-O) > Y,, V'p; k, yk( ),(2.221)

o~ =1,2,3. ol

Let us integrate with respect to w,, k over a small region surrounding

point fa, k3. As a result we will obtain the following equation:

"1j m , 0"A10) c t

- s - (rot [k3A(3)] + [k3 rot A(3)j)

-(OS~ ar.a if...~ 1(3) + i() ' InkQ0)a3O12 k2))4

'" X At,~ A~1 + XIlk (w3 ,k 3 ', k) AJ( 2) A,(,). (2.222>

Here 1-0.

Let us introduce the unit vector along A(,(Au)=e,A()), multiply

equation (2.222) by egi), and use property (2.198).

-- 3 - ell "(3)) t- - [e, [ke ]] OA,

-6)3 --L (e( 3 )1e 11 ee 3 ) Ie(), A 3 +

+ 2i6 3Xlk((o, k3,o 2k2) e(3)le(,) e( 2)kA, A2. (2. 223)

We write this equation neglecting the spatial dispersion. From
formulas (2.182) in this case it follows that

el L2 =rc[ke~l V[1.p) sIv.'~I
a

2  W

Using this, we will obtain the following equation:

[e, + e[e3 (3)6le( 3) 3+

+ L A X (a3. (.) ), e(,Ie )kAI A2 . (2. 224 )

80



This equation coinciaes with the third equation (2.37). In

comparing them, it follows to consider that

A 2i
eae 2= j-- e(3 ), 8 ,,e(3); C ----- - e(3) O(o)3 ) e(,),e(2)k.

The equation for A2 is obtained from (2.224) by replacement of

- k3-1,-ks2--*3,i--ok. With such replacement, according to (2.200,

2.191) function

Zil (6)3,. 2) e), "e(,)l,'e(,) (2.225)

does not change. Furthermore, A,(-A*,.-'k) (t, kj)

In order to obtain equation for A1, it is necessary to use

equality (2.198) and produce replacement of o33,k3-- (o-k, 3-0l, i-j.

With such replacement function (2.225) again remains constant.

If one were to substitute expression (2.220) in laws of conser-

vation, then we will obtain corresponding expressions in the

approximation of three waves. In particular, from (2.214) (2.44)

follows.

For cubi: nonlinearity instead of (2.220), in general, it

is necessary to use a combination of four waves, the frequencies

and wave numbers of which satisfy conditions

01+(02+(08 = o&4 ; k+k 2 +k,="k 4  (2.226)

and (2.221).

it is essential that conditions (2,226) can be satisfied by

two waves if

w, c0os); w4 3w; kik 2=k=k;k 4 =3k.
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It is necessary to remember that functions A should satisfy
equations of zero approximation (they are amplitudes of natural

waves of the linear mediu,). At the same time, in the presence of

dispersion conditions (2.219) and (2.226) for natural waves cannot

be fulfilled; small deviations from conditlob (2.219) and (2.226)

can be considered by means of the introduction of "vectors of

detuning" A,- a; A,- ; A3 -'P (see also §§ 3-4 of this chapter). Let

us note also that the presentation of the field in the form of

superposition of harmonic waves (2.220) can be replaced by a more

general representation in the form of the sum of wave packets;

here 6 - function in (2.220) should be replaced by functions of

finite width.

As was shown in the introduction, in those cases when the

aproximation of the solution by a small number of waves is unsatis-

factory, sometimes it is more convenient to use another extreme

approximation, which consists in the full disregard of the dispersion.

In this case instead of expressions (2.146, 2.148) we have

Dl (r.) = all E~r, t) + X t,,E, (r, t). E,(rOt +

+ O,,SlE(r,f)E*(r, tE (r,1). (2.227)

Here e ij- ijk' 0ijkl - constants of the tensor.

Intensities of fields will again be presented in the form of

(2.152). Equations of zero approximation have the form

I 8D()
rotH= H !L, divrH=O (2.228)

rot, E -L 2 H divr D(') =0
c 8t1

d represent linear equations of the ani s otrop4c medim with the
tensor eiJ'
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rot,E IOH i, V+ i 4.

From equations (2.228) it follows that the dependence on rapid

variables enters only into combustions t-vor (see the introduction).

From (2.228, 2.229) it is possible to obtain in the corresponding

approximation telegraph equations, which were used in work [55]

for the description of shock waves in electrical lines.
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CHAPTER IV

PARAMETRIC EFFECTS IN OPTICS

§ 1. Introduction

Disturbance of the principle of superposition in a nonlinear

medium leads, as was shown in Chapter II, to interactions of waves

of different frequencies. An important clasp of such interactions
Is the parametric interactions (see § 4 of Chapter II) appearing in

the nonlinear dispersive medium, which is exoited by an intense

electromagnetic wave - so-called pumping.

Parametric waive interactions were repeatedly observed in the

range of decimeter and centimeter radio waves (see, for example,

experimental works [20, 151-153]). Below we will examine peculiarities

of parametric interactions in reference to optics, where in this

chapter the main attention will be given to inteoactions for which the

ft'equency of pumping and frequency of interacting waves wi are either

comparable, w x wi or w > i The result of such interactions,

as was shown in § 4 of Chapter Ii, can be the amplification of

parametrically interacting waves; w- will analyze parametric inter-

a ,icns with w << w (modulation of electromagnetic waves in

nonlinear media in Chapter V.

In this chapter the field in the nonlinear medium will be written

in the form

E(t,r) =e..(prexpi(cit-kkr)+ £ X

N

X e,A, (Itr) eip 1(w,1 I - k~r) E.+ £Et.
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The character of the interaction of waves E in the medium,

excited by an intense wave of pumping EH, is determined by nonlinear

and dispersion properties of the medium and also by the relations.. p

of amplitudes At and AN. Here one should pay attention to the fact
that in the presence of an intense wave of pumping not only waves

of the field (through electron or ionic oscillations possessing

dipole moments, different from zero, see Chapter I) dipole moments,

but also waves of field and completely symmetric oscillations of
molecules of the medium not possessing a dipolu moment (one-sided
in effect of such oscillations on the field of the light wave,

"passive" combination scattering was discovered in the 1930's

by L. I. Mandel'shtam and G. S. Landsberg a.4d Raman [154-155]),
and electromagnetic and acoustic waves etc.

In accordance with what has been said, in -his chapter we will

examine separately parametric interactions of two, types. We will

subsequently call "nonresonant" the parametric interactions
appearing in the medium, the nonlinear properties of which are

described by equations of the form (l.la) or (l.41a). (Here

frequencies of interacting waves can be changed in rather wide

limits; the possibility of the appearance of accumulating effects

is determined by dispersion properties of the medium). Conversely,

parametric effects appearing with the interaction of completely

symmetric oscillations of molecules (frequency S) and oscillations

with a dipole moment different from zero have a highly marked

resonance character - the frequency 1 0 is fixed and is the parameter

of the medium.

The theory of parametric intqractions in which acoustic wave

participate is analogous to the theory of "r resonant" electro-

magnetic interactions.

§ 2. Nonresonant Parametric Amplification
of Traveling Waves in a Quadratic Medium

Within the bounds of the three-frequency interaction, as was

shown in § 4 of Chapter II, two parametric effects are possible:
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1. Parametric amplification of two weak waves with freq'encies

' + W = (We.1)

(so-called parametric amplification with high-frequency pumping).

2. Parametric conversion of energy of weak waves with frequencies

I and w 2 , which satisfy the relation:

(4.2)

The number of parametric effects in ihe quadratic medium can be

considerably expandeu if its dispersion properties allow consecutive

three-frequency interactions. Taking into account, for example, two

consecutive three-frequency interactions, one should examine the

interaction of waves with frequencies wi, W 2 ) W3 and w1 ,, which

satisfy relation

(OX + W, = C.; G)J + (0. = (03; M, + 0). = ( 4.3)

(furt'herwe will be convinced that (4.3) is one of the possible

variants of parametric amplification with low-frequency pumping).

Let us turn to a more detailed investigation of the enumerated

effects.

2.1. Parametric Amplification
with High-Frequency Pumping

Stored interactions of the type (4.1) can be realized, obviously;,

in media allowing coherent generating of the second harmonic (see

§ 2 of Chapter III). In a uniaxial crystal of the KDP or ADP type,

pumping should excite the extraordinary wave, and oscillations of

frequencies wl and w2 (here they will be called also frequency of

the signal w = Wc and difference frequency w2  w p) should excite
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ordinary waves. At the assigned frequencies wc, Wp, and wH the fixed

direction can be found, in which there is carried out one-dimensional

coherent interaction of the type (4.1) (for suzh interaction v=v-).

Fig. 4-1 shows the method of graphic determination of the

direction of synchronism in a uniaxial crystal. For 60 (compare

(3.8) we have

If the frequency and direction of the wave vector of pumping

are fixed, the obtaining of considerable coherent lengths with a

frequency shift w can be attained due to the use of two-dimensionalI c
interactions. The truncated equations, which describe parametric

amplification with high-frequency pumping, were already derived in

Chapter II.

z Fig. 4-1. Determination of
the direction in which one-
dimensional parametric
amplification with high-
frequency pumping occurs. In

ethe first quadrant of plane
z', x' sections of surfaces

of wave numbers k°, k 2 (solid

circumferences) and the section

,0. The point of intersection
Hof the circumference of the

1 z \L radius k + k (dashed line)

-with curve k (0) determines

the direction of the synchronism.
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Considering in (2.39) A = A = const and passing to the real

amplitudes and phases [see (3.19)], we obtain the equation of the

form (in contrast to (2.39) we consider here damping in the medium)

d + aA sin 0 + 6AO; ( a)

dz (4.4b)

d + A + (, -- + 0 Acos .
di ~ A As!(~ic

Here P =1 + 21 parameters a,, a2' 61) 62 and A have the same

meaning as analogous parameters introduced in Chapter III [see

formulas (3.23)-(3.24); (3.44)].

Equations (4.4) must be solved with boundary conditions, set

when z = 0.

A' (0) = A/9; A2 (0) = A2o; (D (() (4. 4d)

As was shown in Chapter II, for the special case A = 61 = 62

= 0 equations (4.4) allow the existence of waves by growing

exponentially in space. System (4.4) can be unstable in space. In

order to determine regions of instability in general A p 0; 61 X 0

arnj 62 3 0 we will use the usual procedure cf investigation on the

stability of systems of the third order developed in the theory of

oscillations. Introducing small variations of amplitudes A1 ,2 and

phases (P

A4=A,o+a,; A,=4AX+a,; '0= 'o+, (4.5)

substituting (4.5) into equation (4.4), expanding the right sides of

equations in Taylor series with respect to small a1, a2, i and being

limited to terms of the first order of smallness, a system of three

differential first-order equations for a1, a2 and *. Calculating

coefficients of the characteristic equation of this system and using
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the criterion Routh-Hurwitz [54], we will obtain the conditions of

parametric amplification of traveling waves in a quadratic medium

with high-frequency pumping:

l0<2 i (4.6)

The graphic image of regions of amplification (4.6) is given

on Fig. 4-21. From (4.6) it is clear that parametric amplification

in general is impossible with an amplitude of pumping smaller than
the threshold value:

f f A) A=.AA-_ __OPI, (, e,._ _ ( 4.7')
F" o,,,(elp ")(e,p 8-1) oo

Fig. 4-2. Regions of parametric
amplification of traveling

X 0' waves in a quadratic medium
with high-frequency pumping
(region pf "instability in
space"): shaded is the region
of instability when 61, 2  0.

j With a growth in iAI the threshold value of the amplitude of

.4 pumping increases. The obtaining of analytic formulas for the

L amplitude and phases of growing waves: in general, when A , 0,

F 61 0 and 62 0, prove to be very laborious.

J2

'Let us note that condition (4.6) has the same form as that
condition of instability of a parametrically excited oscillatory

circuit known in the theory of oscillations (see [147][148]).

39



ForA= 1 = 2 = 0 the solution of system (11.4) has the form

(see also (2.62))

sin0.= _ 1; (4.8a)

A, (z) = eraP+ bie-r@; (4. 8b)

A,(z) - aler + b2e6- , (4.8c)

2 M2 A ( e, p wk.) ((e2 pw181)d)
I A *A A A

c4kl cos kts1" cos s1zok' cos kss2 .cos szo

Constants a,, bl, a2 and b 2 can be determined with the help of

boundary conditions. The most typical in the problem on parametric

amplification are boundary conditions where only one of the

amplitudes A1 0 and A2 0 is different from zero; in the medium with

variable parameters the signal is introduced from without, and the

wave necessary for amplification of the difference frequency appears

already inside the medium. When Ale d 0; A2 0 - 0 from (4.8) we have:

A,(z) = A10 ch ro z; (4.9a)

FA A
A4k I cosk s1.cossz

A2 (z)j A o A A sh1'0 z (1.9b)
01 cak 2  s 2 .cos s z zo

(see Fig. 4-3).

From (4.8) it follows that the factor of accretion depends on

the frequency of the signal as rO_-(nf--wj. The last expression

reaches a maximum when, = , and such conditions of the parametric

amplifier can be called degenerated. With the Oeparture of wc from 2

F0 decreases, and when wc=O0;d, the parametric amplification in the

examined approximation in general, vanishes (let us recall that the

above-cited analysis is carried out with the help of truncated

equations of the first approximation). It is obvious, in reality,

that the frequency range in which there is parametric amplification

proves to be considerably smaller and is determined, in the first

place, by linear dispersion characteristics of the medium. (Formula
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Fig. 4-3. Graphs of the change
-- - - - - - -J in space of amplitudes of the

signal A1 (z) and difference

a-I---- - ! frequency A2 (z) for boundary

_ conditions A1 O 0; A20 =0.
, - -1 - - - X Plotted along the axis of the At

I ordinates are given amplitudes AI=A;
- --_-_ - - - - - --- / I..

A, 0 =k, cos krsi cos ,,i.
A A

,YI 4 k Cs k icoss,.coss z*
_ IAlong the axis of the abscissas

I I 'I

0x It 2 3 r

(4.8), (4.9) pertain to the case A = 0).

The solution to equations (4.4) is when A = 0, but losses

different from zero can be obtained with the help of a change in

variables (3.52) useful in the case 61 62 = 6

For the case 6z << 1 most interesting in practice, calculation

of losses is reduced to replacement of the parameter o. accretion

F0 by

"= o-" (4.10)

When A $ 0 the effectiveness of the parametric interaction is

determined by parameter (compare Chapter III); when A > I
interaction practically vanishes.
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2.2. Parametric Conversion of Frequency

The interaction of (11.2) is described by equations (2.66)-(2.67),

derived in Chapter II. As was already indicated in Chapter IT, these

equations do not have exponentially growing solutions. The

interaction of waves of frequencies w1 and w = WH + W has a
character of spatial beats. In order to calculate the form of the

jdatial beats, we will use the boundary conditions. Let us assume

that

A1o#0; A2 0 . (.11)

According to (2.69) we have: (here and further, instead of

designations of equations (2.66) and (2.67), we use designations

accepted in this chapter)

A,(z).= aero" +bie--lr; (4.12)

A. (z) c'kg C03 cos o hizO ro (aier - be-'r.z) (4.13)
U62 (. e, p o-)

With boundary conditions (4.11), from (4.13) we have a, = b1 and,

consequently,

A, (z) =A 3 cos ro (4.14a)

A A
A2,(Z) =A10 4 t1css o tz i z

"Acos (4.14 b)o k, s a  2 o 2a  z

Considering that Ai are amplitudes of the electrical field and

using (2.42), for energy flows along the z axis we have

A A)
S. = (A2ok COS kfs, Cos 1Z) osn o Z; (4.15a)

9.M 1.2 (4.15b)
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Whence

(4.16)
SISMAxc (OL

Thus, for the interaction (4.2) the energy periodically passes

from the wave of frequency w1 to the wave of frequency w2 and back

(see Fig. 4-4). Here the total energy flow

(El l 1] zo- [E23%i] zo + const.

Iz)

0

X Zx

x 2zr r,,

Fig. 4-4. Graphs of the change in space
- A 1 -" A.

of amplitudes A(z)=- ;A,()=A- for a
An. Aio

parametric interaction of the form

( hI 0i,+Cu; k-+kH=k2 with boundary conditions
Ajo*O; A2o---O

In those cases when the energy passes from the wave of the

smaller frequency to a wave of greater frequency, the greater the

pumping accomplishes positive work. the larger the ratio -1- [see
Gh

(4.16)]. With reverse transition, on the contrary, the wave of

pumping absorbs par- of the energy - it accomplishes negative work.

Therefore, an interaction of the type (4.2) can be used in nonlinear

optics for amplification with simultaneous conversion of the

frequency upwards.

Thus, just as for amplification with high-frequency pumping,
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the condition of synchronism for the examined interaction can be

carried out in a uniaxial crystal. Here waves at frequencies w1

and - extraord'nary (see also Fig. 4-1.).

2.3. On Parametric Ampl]irication
with Low-Frequency Pumping

For an interaction of the form (11.3) the field in the medium

should be presented in the form

4

E=eAexpi(ot-kr)+ .eA 1(r)expi((oj-kjr) =

4

E.+ E . (Z .17

For simplicity we will consider also that together with (11.3)

conditions of synchonism of the form

kl+k==k.; k-+k,=k3; k2 +k =k4. (4.18 )

are fulfilled.

Then, disregarding losses in the medium, for complex amplitudes

Al-A 4 we will obtain the truncated equations

A A , ' A . e2)A.A;+
kcosk 1scossizo-- + I- jC eIeX

+i_ . ) A0 A,*,•=0; (4.19a)I , e , . eXA, O

A A dA -. 2x 4 'eA,

k2 Cos k2S2 COS S2Zo -+i- 'e 2 X" e e A. A +

.t i 2 ( ,, .e.)A, A.. _0 (4.19b)

A A dA, -- i2. Ik3 Cos k2 2COSS 3ZO-+ " ( 3 e e)A.A4,=0; (4 .3.9c)
A A dA .2X A+Je 2 A =O

k, cos ks 4 Cps s42z " + e2)A 2 0' (4.19d)
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In accordance with what has been said in Chapter II solution to

the system (4.19) can be represented in the form

A,(pz)=A,.exprz, 1=1,2,3,4. (4.20)

Substituting (4.20) into (4.19), we 4rrive at the dispersion

equation of the fourth order for the propagation constant F.

•I Numerical analysis of the dispersion equation (see, for example

[60]) shows that the purely exponential accretion of amplitudes

A1 and A 4 proves to be impossible; the interaction of the waves has

a character of spatial beats, and the amplitudes of maxima are

increased with an increase in z.

The appearance of the exponential by growing waves with

consecutive three-frequency interactions is possible if dispersion

properties of the medium allow only the fulfillment of the first two

equalities of (4.18) - only one of the waves '"sum" frequencies

W 3 and w4 can coherently interact with the remaining waves. In

order to be convinced in this, let us assume in (4.19) A4 - 0.

Then system (4.19) can be presented in the form (the amplitude

of the wave of pumping, not limiting the community, can be considered

real)

-+ i(0a'A; 5+A) =0; (4.21a)

- -i as 0; (4.23b)
dz
dA +- Iass 0 ;
dt(4.21c)

C'A o "ku1 cs u2z0 c'k co "" k s cos "

A',~i ~ A~

2_%4(e,_z_"a's e__e_) A. • +e ee

A A '-3 A A
clkx cos kas2 cos s 2zo cks cos kss cos zzo

Differentiating (4.21a) with respect to z and substituting into the
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obtained expression (4.21b) and (4.21c), we arrive at the differential

second-order equation for Al:

d' (A -aA (11 .22)

and, consequently, when lO 2 > O1a3 the solution of (11.22) has the

form

A, = ale m r2 bl e-rs.

Substituting (4.23) into (4.21c), we are convinced that the wav. of

i ,quency w3 1 exceeding the frequency of pumping grows exponentially.

The unbounded accretion of amplitudes of the parametrically Irtac,,

waves, of course, cannot take place; in the quadratic medium

limitation of the amplitude (saturation of the parametric amplifier

of the traveling wave) occurs owing to the reverse reaction of

growing waves on the wave of pumping (let us remember that formulas

(4.9) (4.23) are obtained in the approximation of the assigned field).

Let us turn to the investigation of the effects of saturatiL. ; the

greatest interest in such investigation is for conditions of

amplification with high-frequency pumping.

93. Effects of Saturati.n with Parametric Amplification
t of Traveling Waves in a Quadratic Medium.

A Tunable Parametric Light Generator

3.1. Conditions of Saturation of an Amplifier
with High-Frequency Pumping

To investigate the effects of saturation in an amplifier with

high-frequency pumping, besides equations one should consider 
(4.4)

also equations describing the change in amplitude and phase of the

wave of pumping. Truncated equations for real amplitudes and

' phases, which completely describe the three-frequency interaction

in a quadratic medium, have the form:

dA_ + _ , A, sin(a + aA, = 0; (4.24a)

dA,,AAsin()+6jA2=0- (4.24b)
dz
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da. A, Assin- + 6As 0; (4.24c)

(O A, .. A, A._ A, A,_
\Aa+A+ At- + A A 4.24d)

Here the meaning of parameters al, 02 03' 61 6 6 andAis

conventional, and P = + - 4H. Syste. (4.24) in general can

be solved only numerically; when 61 = 62 6 3 = 6 (in particular,

6 = 0) the equations possess the first two integrals (see (2.113)

and (2.43a) of § 3 of Chapter III): using the first integrals)

it is possible to exclude, for example, variables A2 and A and obtain
2 3

an equation describing the behavior of phase trajectories on the

plane A :

J f = AtD.A). (1.25)

We will not conduct detailed analysis of (4.25) here: it basically
is analogous to that conducted in § 3 of Chapter III and is

carried out in wor4 [157.1. Here we will limit ourselves to con-

sideration of the simplest A = 0 and 6 = 0 for which the obtaining

of analytic relations prove to be possible (see also [158]). We

will consider that when z = 0

.A (0) =A10; A:(O)= O; A.(0) =A.; 04(0)=o- (4.26 )

Motion with boundary conditions (4.26) is obviously the motion along

the separatrix (see Chapter III), and therefore sin P = 1 1; cos 4 =

= 0. From equations (4.24a, b) in examined case we have:

diaat oAl

and, using (4.26),

A2 A , A2+A (4.27)97
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Similary we have

*~ A00~ A+~ ( 1 .28)

No A -A o)+ A . (1.29)

Substituting (42.7)-(4.28) iinto (11.24b), we obtain:

"A- =[ (-2-1- A2.- AA2) (-L- A2 +

dz a.)(, 10

Introducing designations 0F=11-A2o. v= a0-ILA2 and integrating (11 .u

we obtain:

A,

Introducing a new variable w2-A2 =W2,y2 the integral in the left

part of (4.31) can be reduced to an elliptic integral of the first

kind. Then instead of (4.31) we have:

dy _Z ,(4.

OR = to . (4 .33 )

Turning the elliptic integral, it is possible to arrive, as is

known, at the Jacobi elliptic functions.

From (4.32) for A2 we have
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*0 4.~ (34a)
A,(z)- V !A...cn K

where

S=)/'11 PY) I-V-Aka )

Using (4.34a), formulas describing the change in space of amplitudes

A1 and A3 can be obtained;

1 
FRE

CIS. k *II • ~~~A.(z) =A..-s, K.- G. : " i 3

Using (4.34), it is possible to construct graphs of the change.

in power fluxes along the z axis: s;=[E,1,]io; S2 =[E2 H2Izo; S. =[E. H. Iz,.

In Fig. 4-5 such graphs are constructed for boundary conditions
(4.26). From the given curves it follows that the interaction of

waves in the examined case has a cnaracter of spatial beats; the
exponential growth of amplitudes A,, A2 at A2., A2 " A is d-layed, and

amplitudes of waves of the signal and difference frequency reach

a maximum and then start to decrease, transmit their energy to the

wave of pumping. The period of spatial beats

Ao=-- Kk

and maximum power amplification

__ z+ s.(4 .35)

Ste on S1.

and, consequently, if is not to small, the efficiency of the

amplifier can reach units and tens of percent. Losses and deviations

from conditions of synchronism worsen characteristics of i.he

ampli fier.
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Fig. 4-~5. Graphs of the change in spatce
of powers of the signal S (Z)/S 10  d If fe r-r c:

frequency S2 (z)/Sl 0 , and pumping S()/l
with parametric amplification of
traveling waves in a quadratic medium.

Just as in the theory of the generation of harmonics, the
ii~fluence of the indicated factors is determined by values of th(,

given parameters Wh-n A 1t--haat(
the processes in the system qualit.,tively does not differ from the-

case ~-. Let us note, however, that when 6+#0 together with

the spatial beats there takes place a monotonic decrease in arnplitudc ,

of the interacting waves. At ,-ufficiently large amplitudes A1I and

A 2 on the segment of change in z [0; -1] have only one maximum each

(see [157]).

The method stated above of the calculation can be used and

during the analysis of interaction of the type (41.2)1 in those cases

when and here it impossible to be limited to concepts about the

assigned field of pumping. Let us note, however, that the absence

of exponential growing waves in the last case makes this analysis

less urgent.

'Let us also note that this method is completely applied to
the problem on the generation of the second harmonic in the two-
dimensional medium (see (3.19a)), It is not difficult to see that

here when A()(0) A A2 (0) the spatial beats will take place when

1W 1

A 0.
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Investigation of conditions of saturation of the parametric

amplifier with high-frequency pumping is of interest not only from

the point of view of ihe problem on the calculation of its maximum

output power but esp- ally in connection with the problem of

parametric generat.,n of electromagnetic oscillations. Acutally,

it is easy to see uc if being under the influence of an intense

wave of pumping quadratic medium is placed in a resonator, possessing

sufficient high quality, in the medium oscillations at frequencies

W and w2 can be self-excited. Such a generator represents special

interest in the optical range (cm [63, 64, 144, 145]), inasmuch as

at a fixed frequency wH in principle considerable returning of

frequencies w1 and w2 is possible (let us recall that if we are

distracted at present from dispersion properties of the medium,

the only condition superimposed on frequencies wi and w2 is the

condition (4.1).

It is necessary to note that parametric generators of the

indicated type are investigated in detail in the radio-frequency

band (there we usually call them two-circuit parametric generators,

see for example, [148]). However, in optics such generators posse~s

a number of peculiarities, and we will turn to a brief analysis of

them.

3.2. Parametric Light Generator

A diagram of a tuned generator is shown in Fig. 4-6a. Falling

here on the quadratic crystal is the wave of pumping EH, freely

penetrating the latter. Directions I' and I" are selected in such

a way that waves of frequencies wl and w2 1 propagating in the
indicated directions, can coherently interact with the wave of

pumping

k, + ks km

and, consequently, in virtue of that discussed in § 2 of this chapter
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a Fig. I1-6. Diagrams of parametric
light generators: a) tuned
double-resonator generator; b)

2 f monoresonator (degenerated)
parametric generator

i • ,

when Al.2(KA. AI-.. roz, A,', e'.Q If now in direction of rays 1, 2

(let us recall that waves at frequencies w1 ,2 are ordinary), which

emerge from the crystal, we install mirrors (see Fig. 4-6a), in the

system there appears positive feedback, and self-excitation of the

oscillations becomes possible.

Values of frequencies of self-excited oscillations are determined,

obviously, by the position of the mirrors.

We will not discuss in detail the analysis of factors determining

the range of smooth retuning of the generator; it is easy to see

that it is connected, first of all, with linear dispersion properties

of the quadratic mediumt (see £63]).
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Let us turn to the investigation of the process of excitation

of parametric oscillations. Let us consider the most simple variant

of the parametric generator - the so-called degenerated parametric

generator (see also [144]-[145]), in which

(4.36)

2

Self-excitation of degenerated parametric oscillations is possible,

obviously, in a one-dimensional resonator of the type Fabry-Perot1,

which contains the quadratic medium oriented in such a way that the

phase speed of the ordinary wave of frequency w is equal to the phase

speed of the extraordinary wave of frequency w. = 2w in a direction

perpendicular to mirrors of the resonator. A diagram of such a

generator is shown in Fig. 4-6b. Here a plane wave of pumping is

in incident on the Fabry-Perot resonator:

E =*e3 A. exp i(ct-kr). (4.37)

It is assumed that the resonator is transparent for the wave of

pumping; reflection factors with respect to amplitude at frequency

w 2wH

R2 (O)= R2(d)= 0. (4.38a)

If the nonlinear medium occurring in the resonator Js oriented in

such a way that conditions of synchronism are fulfilled for frequencies

(4.36) and reflection factors at frequency w

I R.(O) == ; R. (d + 0  (4.38b)

'In a one-dimensional resonator nondegenerate oscillations
S1+ = W H are possible, of course (see Fig. 4-1). However, here

a change in the generated frequencies is possible cnly with a change
in the direction of the wave vector of pumping kH .
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the thermal fluctuations inevitably present in the resonator can

cause self-excitation of oscillations at frequency w1 . Here the field

in the resonator can be represented in the form of the superposition
of direct (all values pertaining to thei: will be noted by a (+) sign)

and return (-) waves:

E+ e+ A+ (iz) exp i (2ot- kt z) + e+.4# ([tz) exp i (ot-kL z). ( 39)

E-= e AF(p)expi(2cat+ 2 z)+ e AlF (pz)expi(ot+kz). ( 4.40)

Values referring to the field of pumping are noted here by subscript

2(2w), and to the field of paranetric oscillations 1(1w). It is

important to emphasize that although relationship (4.38a) takes

place, in the field of the return wave, especially at large A1 , there

are inevitably present frequency oscillations 2w - the return wave of

the parametrically excited oscillations generates a second harmonic

Therefore, in the examined diagram there always exists a "reflected"

wave at frequency 2w, E(oTp), which propagates in the direction of

the generator of pumping.

If one were to be interested not only in steady-state oscilla-

tions of the parametric generator but also transition processes,

resolution of problem can be obtained with the help of the procedure

discussed in § 5 of Chapter III. The process of excitation of

parametric oscillations can be presented as a sequence of steps in

each of which the interaction of the waies is described by equations

of the type(3.20). Then the initial equations, as in the problem

on the resonator frequency doubier, here are equations (3.65) which

must be solved with boundary conditions (compare 3.66).

'Here it is appropriate to pay attention to the important dis-.
tinction of the problenm on the parametric generator (generator of
subharmonic) from the problem examined in Chapter III on the generator
of the second harmonic. If in the last case, the value of initial
amplitude A2 0 is immaterial, the process of generation of the second

harmonic proceeds when A2 0 = 0, parametric excitation is possible

only at an initial amplitude of the subharmonic different from zero
(or in the presence of a side force having components at a frequency
of the order of frequency of the subharmonic).
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AA4(N) (0) R. (0).Ai.NI) A1
()l.l4a)A4F-N (4) = .(d).- At _,,-j) ((4d)a

At+(N) (0)= AHo; A -2 N)(d ) =0 (4. 41c)

N - as before, the number of the step. In accordance with t~hat
mentioned above on the ro] ) of initial conditions in the examined

problem, the following certainly should be

A+ (4.42)

the initial amplitude of the direct wave of the subharmonic for the

first step should be different from zero'.

In the analysis of equations (3.65) we will consider that the

condition of synchronism is fulfilled exactly (A = 0), and the ratio
of the initial amplitude of the subharmonic to the amplitude of

pumping is small

We will consider also that losses in the medium are small (6d<<)

and the condition of the appearance of growing waves A,>A. where
> I A is determined by relation (11.7) is fulfilled with a reserve,nop

and r ro.

Under the assumptions made an analysis of the process of
establishing parametric oscillations can be conducted, by using only
amplitude equations (3.65) - motion is accomplished along a

'If quantity At(1) (0) has a fluctuating origin, into equations

(3.65) there must be introduced, in general, fluctuating side forces
S(see § 1, Chapter if one is Interested, however, in fluctuations

of the amplitude and phase of parametric oscillations, calculation
of side forces is equivalent to the calculation of the initial
amplitude different from zero of the direct wave of the subharmonic.
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trajector very close to the separatrix, phases 0+ and 0- on every ctep

are constant, and their changes from step to step are connected only

with jumps in the phase of the subharmonic on mirrows. Thus, instead

of (3.65) we have:

* dA +
-- z- - 1 1, 2 A i ¢ (4.411a)

S-- 0,(A) 2 sin4 ± =0 (L4.44 b)

(when 6d << 1 and A >> A the distributed losses in the mediumH nlop

can be considered due to the appropriate correction of values R ).

We will turn, first of all, to the conclusion of conditions of

parametric excitation of the oscillations. If (4.113) takes place,

calculacion can be carried out in the approximation of the assigned

field A + = Ao , A2 - 0. Considering sin O+ = -1 (see the phase plane

of Fig. 3-6a) we have from (4.44a)

A+I () (z) = A+ (O).exp a, A.oz.(4.5)
AI()()AI().eplH (11.145)

At the fixed point of the resonator oscillations of the subharmonic

will grow with time if the increase ir, the amplitude on the N-step

exceeds the loss to radiation through the mirror, i.e., if

A1 +2)(0)>A A(m)(0). In the approximation of the assigned field

AI- 2)(0) =AtN)(d).RW(O).R(d). Using (4.45), the condition of self-exitation

can be rewritten in the form

R(o). R. (d) >"ao, Ao d (14. "6)

For cl l -nstead of .P ) it is possible to use a more graphic

formula

2 ' (el p2 " ) A .> 1 (4.47)
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(fc the ordinary wave of the subharmonic in the examined case), where

Q_.Mkd - high quality of the Fabry-Perot resonator. The term

standing in the left side of inequality (4.47) can be called the

effective modulation factor of the dielectric constant of the quadratic

medium M; here condition (4.47) has the same form that of the

corresponding condition of excitation of the parametric generator Ith

lumped parameters [147]'.

It is not difficult to show that for the double-resonator generator,
I

instead of (4.47) M>---. If the process of establishir.7 oscillations

in parametric generator is deocribed by equations (4.44), the change

in amplitudes of pumping and subharmonic on every step can be calcu-

lated by using solutions of the type (3.36) and (3.37).

'Thus, in the theory of parametric generation in the distributed
medium, in contrast to the theory of diagrams with lumped parameters,
two conditions of instability appear: the condition of instability
in space (4.6) and in time (4.47).
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We have:

A+M (d) = At+( (0) chaA ON (70N d) 4.48)

"A21) (d) AON. th a,. oN ZON -- d). ( 449)

Here

AON b [A (0)' (4-50)

NO+ A Ao+ - )

I .arth A" (4.51)

Quantity AN)(O) can be calculated in terms of M-N_2) (d); here one

should consider that part of the energy of the subharmonic is expe.nded

due to radiation through mirrors and owing to generation of the wave

of frequency 2w (second harmonic of parametric oscillations). The

last process is described by formula (see (3.36)), and the boundary

condition (4.41c)

A2- (z) A +N-1))- R. -t

::X [V *;7- a2 A+-) R. (d) -(d -- z)], (14 52)

and a decrease in the amp]itude of the subharmonic Aj-(z) occurs

according to the law of the hyperbolic secant (3.37), so that:

A& (0) = A+1) (0) + R., (0) R. (d). A+N 2) (d) . sech X

x [1Vi/o R.(d).Ah_,V (d).dj (14.53)

Using (4.8)-(4.53), one can determine law of tne establishment of

parametric oscillations.

Resulte of -he annror~nniez ca'culation are given on the granph

of Fig. 4-7. Illustrated here are laws of the change in relative

amplituaes A2 2( and A, 'N) - as a function of the number of
A.- A 1o
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17.

3-7

II

too 200

Fig. 4-~7. Process of estab-
lishing the amplitude of steady-
state oscillations in the de-
generator. Plotted along the
axis of the abscissa', is the
number of reflections in the
resonator N, and along the axis
of the ordinates - reduced

amplitudes of pumping ,= A)(d)

and subharmonic ;= A
1

, (d) at theAno

outlet mirror of the resonator.
The parameter A. 00d=0,1; R, (0)=0,99;

R. (d) - 0.99.-

reflections N.' As follows from the given gr3ph, the efficiency of

the parametric generator can be sufficiently high. Using (4.48)-

(4.53), it is possible to obtain calculation relationships which

allow determining the amplitude of stead-state parametric oscillations.

Actually, in the steady-state operation

A+i(n(d) A+_ 2) (d) = Ay (d). (4.5.4)

whence, using (4.48) and (14.53), the transcendental equation for Ay

'Calculation of the process of setting when A X 0 shows that the
Afulfillment of conditions of self-excitation with a growth in A

becomes all the more difficult; the efficiency of the parametric
generator with a growth in A decreases, and the process of establish-

ing oscillations has an oscillator character (compare Fig. 3-17a).
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can be obtained. The solution of this transcendental equation can

* be obtained graphically. However, in the case when losses in the

nonlinear medium are absent and the value of the parameter GIAod<1,

it is possible to obtain (see also [14z]) the approximate expression

for the stationary amplitude A,y(d). For this one should use the

energy considerations. In the steady-state operation, if losies in

the resonator are connected only with radiation, we have:

Ir .H;] = [E;TP .H P] + [E2U' .H20-] + 2 [ETI -.HO- ] (4.55)

Here, for simplicity, R. (0)=1 is accepted (energy of the s'ibharmonic

emerges from the resonator only through the right mirror).

Ag,- [A~,~ 2- [A21 2 = 2(1 - R.(d)) A2,(d). (1.56)

Although in general, for the calculation of A2T and A;"' one

should use formulas of the form (4.49) and (1.52), and for aIAHOd<1

and R.(d)-I it is possible to simplify the problem, assuming that

in the steady state of the amplitude of the direct and return wave

the subharmonics in the resonator do not depend on coordinate z and

are approximately equal to each other, i.e.,

A,+ (z) z A (z) - A+ (). (14.57 )

Using (4.57) and boundary conditions (4.41c), as a result of

the integration of (4.44b) we obtain:

.42 = At+ (d) = A.. - a,(A,+,) d.( .58)

A c~ai2.(A-) 'd = a2 (A+, d. (4 .59)

Substituting (4.58)-(4.59) into (11.56), we obtain:

[Alyl ' A.- - P2 (d (4.6o)
do(1, d

According to (4.60) the amplitude of the subharmonic does not turn

into infinity when R. (d)=l: losses in energy occur due to the

generation of the wave of double frequency by the return wave of
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subharmonic Ej-. This (only for the return wave) is explained by

the nonmonotonic dependence of amplitude A+ on parameter a2d (let us

recall that the point with coordinates A2==O and AI#O on the phase

plane of Fig. 3-6a is not special).

Using (4.60), one can determine the amplitudes A UX and AtP2

A X - R!(d)2'" = .( 4.61)
1 A -R--(d) . (4.61)as d

all d

From (4.61) there follows an important conclusion - the amplitude of

the wave of pumping at the outlet of the parametrically excited

optical resonator does not depend on the amplitude of pumping at the

input A,,. The latter means that the parametric generator is simul-

taneously a limiter of the amplitude of oscillations of pumping;

this circumstance was noted by Siegman [145].

The examined models of the parametric generators are, of course,

the simplest. In principle, by introducing resonance elements into

the configuration of the amplifier with low-frequency pumping (see

§ 2 this chapter), self-excitation of oscillations can be obtained

at the frequencies exceeding the frequency of pumping. There can be

definite interest also in the parametric generator in which waves of

the subharmonic and pumping are exchanged by energies on the border

of the nonlinear medium.

§ 4. Nonresonant Parametric Amplification
in a Cubic Medium

11.1. Parametric Amplification in a Cubic Medium in

the Presce of a Stat4Lc V Ld

Inasmuch as in the presence of a static field in a cubic medium

three-frequency interactions are solved, relationships between

frequencies of parametrically interacting waves have the same form

as that for the case of the quadratic medium [see (4.1)-(4.3)]. At

the same time, in contras; to the quadratic medium, an essential
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role here can be played by incoherent nonlinear effects connected

with nonlinear corrections to the dielectric constant of the cubic

medium. An especially essential role of incoheren; effects appears

in conditions close to saturation of the amplifier; a change in

phase speeds of interacting waves and absorption due to the correction

to the dielectric constant can cause a decrease in the amplification.

Below we will explain that stated in the example of an amplifier

with high-frequency pumping. In the approximation of the assigned

field A. =const, the amplification of "weak" waves with frequencies

(0.2. (a 1+(02=%,A.Aj., is described by equations (just as in Chapter ITT,

let us assvme ,, , , o)

4- a, A. A, sin D +81A = 0; (74.63a)

dA+ + oA. A, sin (D +82 A, 0 0; (4.63b)

+ ~ +A~AI)(i+ aL)Acos 0 0. (4.63c)

Designations in equations (11.63) are standard ,=,+ 2 ; the nonlinear

detuning (see § 4 Chapter iII)

a '" =,,+ V, A, + ,4. (4 .64)

Let us note, first of all, that the presence of nonlinear detuning

* considerably affects the form of the region of parametric amplifica-

tion (more accurately, the region of "instability in space" of the
zero state of equilibrium). In Fig. 4-8 there are constructed

regions of instability of the state A,=A 2=0 in the space for cased
-0 and 81.#0 and Y1.2.3<0 (the method of their calculation is

absolutely analogous to that discussed in § 2 of this chapter). It

is clear that in contrast to the case of the purely quadratic meaium,

the regions of instability are now no longer symmetric relative to

the St-raight line A('- he latte-ir is fully evideant, innmfloh as With

the growth in A()>0 and y¥<0 the nonlinear detuning Aol"'. --=yiA, compen-

sates the linear at large valves of the amplitude of pumping.

However, the most important distinction of equations (4.36) from
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Fig. 4-8. Regions of pa:,ametric
amplification of traveling waves
a cubic medium occurring under in-
fluence of a static field in coor-

dinates A0tA,A(y.2.3<O)

analogous equations (4.4), which correspond to amplification in a

quadratic medium, is the fact that for equations (4.63) there are

steady-state solutions, i.e., saturation of the amplifier can occur

in the assigned field of pumping. In order to be convinced of' this,

let us assume in (4.63) 0.
dz dz dz

Then from (4.63a) and (4.63b) we have:

A? = 01__ _ (4.65)

Using (14.65), one can determine the steady-state value of phase 0:

si I' 1jYs (4.66)

Using (9) and (11) for the steady-state values of amplitudes, we

obtain:

!a V A, - (4.67)

,, .= A,. (4.68)

Here
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+ + (Y; + 01,

Here v, and Y; are linear combinations of parameters Y, Ys. and Y3.

It is not difficult to understand the physical meaning of the

obtained result. The part of the energy transmitted by the wave of

pumping to waves of frequencies w, and w2 depends on the value of

phase - At small amplitudes of A, and A2 the value of phase

q is determined by the detuning

AYj A(-') + Y1 A2

and here sin --=-1, and pumping with a reserve compensates losses in

the medium. With a growth in amplitudes Al and A2 the value of the

nonlinear detuning is changed, and phase (D depa±'ts from the value

corresponding to the maximum release in energy if pumping to the

amplified waves. In the steady state amplitudes of waves Al and A2

do not depend on z, and phase $) takes such a value that the wave of
pumping ac'purately compensates losses in the medium (see (4.66)).

When 61,2=O, sin DY=O. Peculiarities of the process of parametric ampli-

fication of traveling waves in a mediam, the dielectric constant

which depends on the amplitude of the wave, can be very visually

illustrated if one were to turn to an examination of the phase plane

of the amplifier. In the presence of (.amping, equations (14.63) yield

to analysis on the phase plane in the ease W,=o),=- -" (so-called
2

degenerated conditions of amplification).

V Here instead of (4.63) we have (AL=A2=A, I=P2=(f):

dI +aAAsin2? + 8A -0• (14.69)I ~ ~dz AM
+AMi) +A(" ) + ,, cos 2q 0. (4.70)

11= A4 + y1 A.
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In accordance with (4.66)-(4.68) in the degenerated parametric

amplifier

Ay- (A (A) + y, A~o : 26 / .-8 (4-71)

and

sin (p.(4I.72)

From (4.72) it follows that in the degenerated parametric amplifier

of the traveling wave four steady-state phases are possible (these

phases are counted off from the phase of the wave of pumping); here

only two prove to be stable.'

Figure 4-9 gives a phase plane corresponding to the system

(4.69)-(4.70). Here, just as before, X=A sin qp, Y=Acosip. An analysis

of the structure of the phase plane can be conducted by the usual

methods of the theory of oscillations. Singular points corresponding

to the steady states here prove to be focuses. The character of the

behavior of phase trajectories at great distances from the origin of

the coordinates is easily established by calculating the tangent of

the angle between the phase trajectory and radius vector:

A(')+y 1 A 2+y 2 A' + aA,ocos2(

tga=A4V = (4-73)_____
dA &,saAsn 2T + 6

From (4.73) it is clear that when A -oo the angle between the phase

trajectory and radius vector A 2=X 2+Y 2 approaches 900 - at large A

the phase trajectories twist around the origin of the coordinates

and approach the circumferences in form.

In Fig. 4-9a the phase plane is constructed for that region

where zero state of equilibrium is unstable - the amplitude of the

'The presence of two stable waves with different phases is of
considerable interest from the point of view of applications (see

:1 [56], [133]).
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a

Fig. 4-9. Phase plane of a degenerated parametric amplifier of
a traveling wave, the limitation of the amplitude of growing
waves in which occurs due to the nonlinear corrections to the
dielectric constant: a) the relationship between the linear andnonlinear detuning is such that there exist two stable states
with amplitudes and phases unequal to zero distinguished by 7r;
b) the zero state of equilibrium is stable; besides it there are
still two stable states with amplitudes different from zero
(region of stable amplification).

weak wave supplied to the input grows in space. (Here IA()+-yjA~L<

< Vo2A --. ) Behavior of the amplitude and phase of the amplified

signal in space, which corresponds to the phase plane of Fig. 4-9a,

is shown in Fig. 4-10. The parameter of curves here is served by

the boundary phase p(O)=q0. From the given curves it is clear th-t

the process of amplification occu--s here in such a way that at first

the phase of the signal takes a value corresponding to the appearance

of the negative absorption on the frequency of the signal. Here

there starts the exponential growth of amplitude A. When A-Ay the

phase somewhat departs from the optimum - the amplifier is saturated,

and the approach to conditions of saturation in the examined medium

has an oscillatory character.

IAn interesting peculiarity of parametric amplification in the

cubic medium is the presence here of very specific conditions of

"stable" amplification appearing only at large amplitudes of the

signal A(O)>A... Actually, although at sufficiently large A(">O the
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C 0 20 30 40 rpI U f02 0 o~5

Fig. 4-10. Graphs of the dependence of amplitude and phase

yj of the growing wave on the coordinate z in a degenerated
parametri' amplifier of a traveling wave, in which the limitation
of ,-he amplitude occurs due to nonlinear corrections to the di-
electric constant. The parameter of curves serves as the boundary

A
phase qpa

zero state of equilibrium is stable, here at the same time the

stabilized amplitude A. can be different from zero [see (4.71)].
The phase plane corresponding to conditions of "stable amplification"

is constructed in Fig. 4-9b. (Here

4.2. Parametric Ampl.ification with
Four-Frequency Interactions

* In the absence of a static field to the youngest of nonlinear

interactions in a cubic medium is the four-frequency. Therefore,

here the intense wave of pumping

eA, exp i (ol -k,r)

can transmit energy to weak waves the frequencies w and wand wave

numbers tk 2 of which satisfy relationships of the form:

stblzdapltd1 anb ifrntfo eo[se(.1]

= Te pas plnecoresondngto ondtins f staleampifcaton



+4,1 2.; (4.7 4 a)

k, +k 2 = 2k.. (4.74b)

Let us note that if one were not interested in conditions of satura-

tion, calculation of the amplification here can oe conducted by

proceeding from the model of the medium with variable parameters

(see § 4 of Chapter II) - presenting the dielectric constant of the

cubic medium in the form:

A A (

IJ, , Z eo(O) + M e l (",-k ) i5)

where the z axis is selected in the direction of vector k,, and Q=20),,

k2 =2ka. Here the modulation factor of the dielectric constant M-OA,

and, consequently, the factor of accretion Po is here proportional

to the square, but not the first degree of the amplitude of pumping

as takes place in the quadratic medium [see, for example, (11.8d)].

It is interes'ting to note that in the examined amplifier it is

comparatively simple to satisfy the condition of synchronism (4.74b).

Indeed, for conditions close to the degenerated the

electromagnetic wave carrying out modulation of parameters of the

cubic medium has a frequency close to frequencies cf amplified waves.

We will not more specifically discuss the analysis of parametric

interactions of the type (4.74) - the smallness of cubic nonlinearity

in real optically tranbparent media makes, in any case at present,

an experimental realization of these interactions difficult. Let us

note also that interactions of the type (474) are not r.alized now

and in the radio-frequency band (although in the theoretical work

Fountana, Pantell and Smith [162] there was noted the possibility

of parametric excitation of oscillations in the millimeter range,

with the use of cubic nonlinearity of molecules of gas for A.=O V/cm

and high quality of the resonator Q-104).

§ 5. Resonance Parametric Effects - Forced
Combinational Scattering

Thus far in examining parametric effects, we originated -

tially from the model of the nonlinear medium introduced in Chapter T

J.18
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and described by equations (1.17) and (1.41). In the indicated

model, in examining the nonlinear addition to potential energy there

were considered only normal oscillations possessing a dipole moment

different from zero and therefore directly connected with the

electromagnetic field. At the same time, in the molecules symmetric

oscillations not possessing the dipole moment and appearing therefore

in absorption spectra are possible. In a linear approximation,

',ymmetric oscillations of atoms (natural frequencies of these oscil-

lations lie usually in the infrared range) and the electron oscilla-

tions determining the polarizability are accomplished independently

of each other. Another situation takes place if' one were to consider

nonlinear terms in the expression for the potential energy of the

molecule.

In order to explain what has been said, we will examine the

isotropic medium, for example, liquid. Let us designate by x the

normal coordinate of oscillations of atoms in a molecule of the

examined medium and by y - the normal coordinate of oscillations of

the electrons.

In the isotropic nolecule the expression for potential energy,

taking into account the younger nonlinear terms, has the form:

U = , 2+ + + (4.76)
2 2

Here F and I - "elasticities" of bonds in the molecule. Terms of the

third order describe the different nonlinear effects connected with

motions of atoms and electrons and with their interaction. Coeffi-

cient a determines the anharnonicity of oscillation x, coefficient

a3 - the anharmonicity of electron oscillations (see Chapter I), and

coefficients a2 and a - nonlinear interactions of oscillations x and

y. It is not difficult to see that coefficient a determines the

phenomenon of combination scattering well-known in optics. Actually,

taking into account this term the equation of motion for the normal

coordinate y in the presence of an external electrical field has the

form:

M R, L + fy + 2xy =eE. (4.77)

dt2 di
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(the molecule is considered isotropic).

With the help of equation (4.77) it is possible to construct
the usual "modulation" theory of combination scattering. Here
assigned oscillations

x=(t)expi[wJ+,(1)]+ complex conjugate (4.78)

(amplitude X(t) and phase p(t). in general, are random functions of

time, inasmuch as the motion x is thermal) nodulate the natural
frequency of the electron oscillations:

Cms = (0 { It I- (t) Cos [(001 + ( (t)] }, (4 .79)

where (,0=-. In the presence of modulation of the form (4.79) the
spectrum of the field dispersed with respect to the molecule contain=,

obviously, besides the frequency of the incident wave w, components
at frequencies w - w0 and t + to - so-called "Stokes" and "anti-

Stokes" spectral components.

It is necessary to consider, however that not always can oscil-
lations of x be examined as assigned. Actually, taking into account
the tern cxy2 the equation for the oscillation x has the form:

d~x

M -+ R--+Fx+ay2=O (11.80)
dis dt

(filed E does not directly act on oscillation x; calculation of
forces of thermal origin inducing oscillations (11.78) for the future

is immaterial).

If field E is harmcnic

E= EOexpi(w t-kr)

and o>a0, the presence of term ay2 in (4.80) does not play an important
role: it ts possible not to consider influences at frequencies w'=O
and 01=2o connected with it. However, if field E is a superposition
of two waves, the difference frequency of w,hich w,-w 2--'o the term ay'
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has on oscillations an x resonance effect. In the first case the

simple "modulation" treatment of combination scattering is inappli-
cable; and there appears a more complex effect, which we will subse-
quently call "forced" combination scattering.

Let us examine forced scattering ii more detail. Let us assume
that on falling the isotropic medium described by (4.76), (4.77),
(4.80) are two monochromatic waves, which we will call the wave of
the signal (frequency w ) and wave of pumping (frequency o, ) so that:

c

E = E +Em Ecoexp i(j - kr) + F,, exp i(.- k~r). (4.81)

We will consider that vectors k,. and k,, are collinear; let us direct
the z axis along the normal to the boundary.

Amplitudes of waves in the medium, as usual, will be considered
slowly changing functions z. For simplicity let us assume also that
_ cOok,<Oo, so that instead of equation (4.77) it is possible to write
the "quasi-static" equation of the form:

Jy, + 2axy = eE. (4.82)

Being interested only in stationary forced oscillations of the
molecule, let us look for solutions for coordinates x and y in the
form:

x= X("el -c)1 + complex conjugate;
y = Yk- + Ye'"' + complex conjugate. (4.83)

Here, in general, it is not assumed that

From equations (4.80) and (4.82) there are relations:

fY+aX*Y=eEe C1Y ; fY.+aXY=eE. e - lk r' ( 4 .8 4 a)

oo8(A + i)X+ .- (yy.) =O. (4.84b)

where R

1M
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From (4 84) there are easily obtained relation for amplitudes

-Y, and Y,, which with multiplication by eN pass into expressions for

j amplitudes of polarization ,at frequencies of the signal and pumping

(we retain only components connected with nonlinear terms):

2xP, q (EE ; 20,, q (E, (1.85)

where q= 2- ----

In general polarizations of waves E,, and Eo, entering into the

examined medium do not coincide. With the propagation of the waves

in a nonlinear medium, their polarizations are changed [see (4.85)].

Here one should note one peculiarity connected with the deriva-

tion of truncated equations of the nonlinear isotropic medium. Let

us remember that in the propagation of waves in a greatly aniso-

tropic medium, as can be seen from Chapter II, the weak nonlinear
polarizability of the medium cannot essentially change its polardza-

tions el. Therefore, truncated equations described the change in

scalar amplitude of the wave A(r, t) without a change in its polariza-

tion e. In the examined case (isotropic medium) any direction of

vectors E, and E, lying in planes perpendicular to vectors S, and S.,

accordingly, is the natural one. Therefore, the truncated equations

desc:,ibing the change in amplitudes of waves both in magnitude and

in direction must be vector equations.

As was already indicated, here we will limit ourselves to the

simplest but also most interesting case when vectors k, and k are

collinear. Here spectral components of the vector of nonlinear

polarizability P, and P, are located in a plane perpendicular to

vectors k, and k.. Then the truncated equations describing the

behavior of the vector amplitudes of the waves, have the form

(compare § 3 of Chapter II):

d ( iA) (EE) E,; ( ,,( iA) (EE:) E,, (4 .86)dz dz
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whker Frcm equations (4.86) it immediately follows
' Cswhere A= ,me to

that if EL and E, are peroendicular, there is no interaction of waves.'

Let us introduce new coordinate zlz 2 and z3, selecting the z3 ax s along

the direction of the propagation of the waves. Vector differential

equations (4.36) allow several firs- integrals of the form:

q~~~_ E- 1=f'and [EcE1PC + N N E111 = 0. (4.87)

Here e1 and E., - projections of vectors E, and E, on the z8 axis; C,

and B - scalar and vector constants.

The first of the relations (4.87) can be interpreted as the law

of conservation of the number of quanta. For example, in the case of

the linear polarization of the waves, for i=j the first relation of

(4.87) obtains the form:

N., + N,i No, (4.88)

where N, - number of quanta of corresponding frequency polarized

along the z, axis, which passes through the area element, perpen-

dicular to the z, axis.

Thus, just as in the theory of nonresonant parametric amplifi-

cation of equation (4.86) it is possible to examine the following

separately for two conditions:

1. Conditions of the amplification in the assigned field of
pumping (linear conditions). In this case the second equation of
(4.86) can be disregarded. Decomposing the vector amplitude of the

signal E. on components parallel to the field of pumping E andjA A
perpendicular to E,, oc 0; E^ E,,= instead of the first equation

(4.86) we have:

'This is accurate only for liquids consisting of isotropic
molecules.
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and, consequently,

" -:--Ec. (0) + Ee I 0) .,".e , II (11 .8 9b )

Maximum amplification takes place for E,1,ijE (0) and A--0. Here for

the factor of accretion we have Po-IENI'. In the medium possessing
Cos 3Z

losses at frequency wc, the exponential growth E, will take place only

when E,>EOp [see (4.7)].

2. Conditions of amplification in which there becomes essential

a reverse reaction of the wave of the signal on the wave of pumping

are conditions of saturation of the amplifier. An analysis of these

conditions represents the primary interest from the point of view of

the theory of the parametric generator, which uses the phenomenon of

forced combination scattering. Here equations (4.86) must be solved

jointly. An analysis of equations (4.86) shows that if A=o and

vectors E, and E, are not collinear, the linearly polarized light

passes in the examined medium into an elliptLcally polarized light.

Here rotations of vectors E,, and E, with the propagation of waves

along the z axis occur in various directio.s. Conversely, when A=0,

the linearly polarized light entering into the medium remains such

even when vectors 9, and E, are not parallel.

For linearly polarized waves, the value of angle 1P between

vectors E, and E8 is determined by the expression:

The law of the change in moduli of amplitudes Ec and E can be

obtained if one were to use the relation

I(EcE*)L + I[ oE.II = IEr - JE( J2 4.90)
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then

d IE, 1= -2 (IE.I'EI'-IBI); A IE.I' = - A. (IE.l. lEvi - IBI'). (14.91)
dz dz

The solution to these equations has the form:

IE,? = C +A ' -,Ge - 2,"1A; "E.12 (C IEI). (4.92)

Here

A= ,/C2--IB12 ;2C =C,. + C,.; G=
'-I-I

A Lc JF.12

The solutions of (4.92), if they are examined for all values z

(and not only for the positive), determine the energy transitions

from the state at z=-co whel^ jEjrl = C- A EI, 2-" (C.+A) and to the

state at z= + co when

IE=I' =C .-+- A IE,, =-. (C-A).

theThus, in the process of the propa-ation of waves, when E,,EC#O
the energy of the wave of pumping passez to the wave of the signal.

The maximum value of the amplitude of the signal at the outlet

of the system is determined by relationship of the Manley-Rowe type

[see §§ 3.4 of Chapter II):I
iE(o f) _E2 (4.93)

Neither parameters of the substance nor detuning ,

enter into (4.93). Of course the less distance at which there is

I attained a maximum power of the signal, the less the detuning and

the greater the parameter q.

If the examined Ledium is placed in the Fabry-Perot resonator,

tuned to a frequency --,-, in it paoametric oscillations at a
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frequency equal to - can be self-excited. The condition of self-

excitation of parametric generator can be obtained absolutely

analogous to that which was done in § 3 of this chapter; here one

should consider that in the parametric generator, using forced

combination scattering, amplification of the signal takes place both

for direct and for return waves.

Designating by R1 and R, reflection factors of mirrors at

frequency fU--WJ or the condition of self-excitation we have:

2P3 E2,,.cussfl 1P 1 R = (4.941)kc ke d

d - distance between the mirrors (compare (4.47 )).

The magnitude of the stationary amplitude in the examined

generator is determined by the reaction of paramctrically excited

oscillations on pumping; therefore, formula (4.93) together with the

maximum amplitude of the signal at the outlet of the amplifier

determines in order of magnitude the eff'iciency of the generator.

Le. us note that inasmuch as usually ca!" I (frequency of the signal

lies in the optical range, and frequency of symmetric oscillations -

in the infrared) the efficiency of the parametric generator, which

uses the phenomenon of forced combination scattering, should be quite

high and reach tens of percent. The polarization of oscillations

of the generator will coincide with the polarization of the wave of

pumping.

It is interesting to compare characteristics of amplifiers and

generators using the phenomenon of forced combination scattering

with characteristics of similar devices using the nonlinearity of

electron polarizability (see §§ 2-4 of this chapter). In both cases

the process of amplification is the result of the disintegration of

photons of pumping, however, if for nonresonant interactions with

disintegration of a photon of frequency o, there appear two photons

of frequencies % , +o,=m), with forced comoination scattering

part of the energy of the photon a) is transmitted to the wave of
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frequency l-o0, and the remainder is transmitted to molecular oscil-

lations at frequency coo. The last circumstance is the reason for

the fact that with forced combination scattering the stored inter-

actions occur independently of dispersion properties of the medium.

The energy exchange between waves of pumping and the signal is

accomplished by the means of molecular oscillations; the phase of

the latter is established each time as optimum from the point of

view of energy transfer from the wave of pumping to the wave of the

signal. Witn nonresonant iriter.,ctions the indicated energy exchange

is carried out with the help of che electromagnetic wave of the

difference frequency; its phase is determined by dispersion properties

of the medium. In accordance with what has been said, if conditions

of synchronism for waves of frequencies o, oc and co.-o cannot be

carried out, the appearance even small dipole moments for molecular

oscillations (weak coupling) can considerably worsen characteristics

of amplifiers and generators on forced combination scattering.

The band of the amplifier on forced combination scattering is

determined by the quantity 6, i.e., relaxation time of oscillation x.

Thus far we were limited to examination of behavior of only

Stokes components of lines of combination scattering in the field of

the intense wave of pumping.

Interesting effects, in a certain sense similar to those

examined in 2.3 of § 2 of this chapter to parametric effects with

low-frequency pumping, can be observed on anti-Stokes components.

In this case the field in the medium should be presented in the form

of the superposition of not two but at least three waves: with

I frequencies o,; o),,= -o0; (aW+Owo [compare with (4.21)]

'E = E. + El + E2 = E. (iz) exp i(ot -kj) +
E E(z)exp I(col - k1r) + E,(pz) exp i o2t - kr). (I4 95)

For vector amplitudes E,, U,, and E, there can be obtained

truncated equations absolutely similar to that which was done above.
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Conducting the corresponding computations, we arrive in the

examined case to the system of three truncated equations for

amplitudes E,, E,, and E,. In the assigned field of pumping the system

is reduced to two equations for slowly changing amplitudes E, and Ea:

'E" _ 1 iA) [ (E'E 1)lkc4 k, -2ki)r+ (E,*E )J E.; ( 4.96)

dz +C

Right sides of equations (4.96) and (4.97) do not contain oscillatory

terms and, consequently, stored effects are possible if

2k. = kc + k.. (4.98)

Thus, if the stored interaction of the field of pumping withA
the Stokes component takes place in a wide interval of angles k,A kc

(let us note that collinear vectors k, and k, were introduced above

only for simplicity), the stored interaction of the field of pumping

the anti-Stokes component takes place only in fixed directions

determined by formula (4.98).

Physical meaning of (4.98) can be explained in the following

way. The energy exchange between waves with frequencies w,, and w,

and o, and ( , is produced by the means of the same molecular oscilla-

tions having the frequency (Do. Both shown interaction will lead to

stored effects, if optimum energy exchange for them was carried out

during the same phase of molecular oscillations (compare (4.18)).

An analysis of equations (4.96) and (4.97) will be conducted

in the simplest case A =0; the amplitude of pumping will be considered

real, and for simplicity we disregard dispersion of the medium in

band c.-w 0 , co*-l-co. Then equations (1.96) and (4.97) become scalar

(condition (4.98) is fulfilled for one-dimensional interaction) and

acquire the form:

r, =P (E. E) ( 4.99 )

d_. r _(E, + Ell), (4.100)
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where ; I'= .E.*

It is easy to obtain a general solution of these equations for

conditions:

z=O;. Ec(O)=Bw; E.(O)= EP

It has the form:

Ea( r. - r, {(r'B. [I +

• .[ r.- ('- ) ]}(4.101)

E'(z)= __ar {rcE - -(Ie -i c ] +

+ E" [r,_ re- (V.-ro ] (4. lO2)

From expressions (4i0l)-(4.102) it follows that when z- oo amplitudes

E (z) and E,(z) approach stabilized values determined by relationships:

• r- r [rA.o + r.E.l; ( 4.

El,- [r.E. + r..(4 O
~~ raE+cI (4.1014)

The character of the change in amplitudes Ec(z) and E, (z) with the

coordinate is determined by the relationship of the boundary arrpli-

tudes. If

Ell+Ell>0 ,  (4.105)

then -Ey>-Eo , and amplification of the anti-Stokes component

takes place. With fulfillment of the inequality opposite the

inequality (4.105), -E.,<-gEo and the amplitude of the anti-Stoke

component decreases with distance.

L It is necessary to note that in an isotropic dispersive medium

condition (4.98) cannot be carried out for waves of one direction;

therefore, coherent radiation of anti-Stoke components in a liquid
excited by an intense parallel beam of the laser, occurs in the cone

by the solution 0 2=-L±--(n.-n), the axis of which coincides with the
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axis of the beam of basic radiation. Here n, n., and N are indices

of refraction. The corresponding radiation of Stokes components in

this -ase also occurs at an angle to the vector k,. Finally, besides

components o)--mo and co eo, in the medium highest combination

frequencies are also excited - o,±tnw0 (n=2,3..., see also [205, 208]).

The spatial structure of this radiation (see Fig. 4-11) can be

established on tne basis of an analysis of dispersion relacionships

of the type (4.98).

ke

Fig. 4-11. Diagram characterizing
the spatial structure of the radia-
tion of anti-Stokes components with
forced combination scattering of a
plane monochromatic wave in an iso-
tropic dispersive medium. The anti-
Stokes component with a frequency
co+=c is radiated in the cone of

directions determined by the rela-
tion 2k,,=.kc+k,. Here directions are

shown in which there occurs radiation
of the component of a higher order

S= (~i~+ 
2 o k,=3k-2k .

2 Thus, the expounded theory of forced combination scattering

permits not only giving a qualitative treatment of the mechanism of

the phenomenon but also obtaining a number of quantitative results.

Here constants (a, A) should be determined from the quantum-mechanicalI calculation or by experimental means. Quantum treatment of the

phenomenon of forced combination scattering is given in [156] and

4[200]. It is necessary to note, however, that ir the mentioned

i 1 works the analysis is limited only to the outlet of conditions of

I the excitation of oscillations on Stokes components (for parametric

2.30
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effects in quantum systems see also (163)). In conclusion of this

section one should stress that the problem above examined on forced

combination scattering is the simplest. Let us note, first of all,

that calculation of the anisotropy of electrical properties of

molecules leads to the conclusion concerning the possibility of

interaction in the medium consisting of such molecules of waves at

frequencies o, and (oCwH--w (Rayleigh and Stokes component) with any
polarizations of the indicated waves (compare with equations (4.86)).

Interesting parametric effects can be connected with terms of

the fourth order in the decomposition of potential energy (4.76). A

diagram of the classical calculation of the indicated effects -

effects of forced combination scattering of the second order,' is

analogous to that stated above. An addition to the potential energy

(4.76) in the simplest case of two normal oscillations has the form:

AU = PLX+ p + PX2 + dXy + P.y. (4.106)

The passive combination scattering of the second order is

described by the term with P,; in equation (4.77) force of the form

2Px2y is connected with it. A reverse reaction to the molecular

oscillations is carried out due to the force 2P3xy
2 in equation (4.80).

The latter means that in contrast to scattering of the first order

a reverse reaction here has the character of the parametric effect

on oscillations x (see 4.80). Coherent molecular oscillations here

can appear only under the condition of an excess in the threshold

of parametric excitation. An interesting effect can be connected

with the term at P,; here appearance of forced c-Lmbination scattering

with a frequency w+o,- is possible with excitation of the medium

by biharmonic pumping of the form:

*=E0exP 7 - ) (4.107)

(in the degeneratea case the "Stokes" component 20,-W

appears).

'For the usual, "passive," scattering of the second order, see
Ye. F. Gross, P. Pavinskiy, A. Stekhanov UFN, 1951, XLIII, No. 4, 536.
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F.r an interaction of the last type coherent molecular oscilla-

tions are excited Just as in the case of scattering of the first

order (corresponding force in (11.80) -Py3 ). Let us note that the

threshold of forced scattering of the second order for both examined

variants is very high.
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CHAPTER V

MODULATED WAVES IN NONLINEAR DISPERSIVE MEDIA

§ 1. Introduction

Thus far, in examining nonlinear wave interactions in dispersive

media we were limited to cases when amplitudes and phases of the

interacting waves do not depend on time (waves are unmodulated). At

the same time, problems on nonlinear interactions of modulated waves

now play a very important role in nonlinear optics. In this region

it is possible to distinguish two classes of problems:

1. Problems connected with the investigation of the process of

modulation o' light waves in nonlinear media (see, for example,

[165]-[172]).

2. Problems, connected with the investigation of distortions

of the form of modulation, with propagation of the modulated wave in

a nonlinear medium or a medium with variable parameters (see, for

example, [56], [173]).

For description of regularities of the propagation of modulated

waves in a weakly nonlinear dispersive medium, the method of slowly

changing amplitudes can be used (see Chapter II). Inasmuch as the

complex amplitudes are changed in this case both in space and time,

truncated equations acquire the form of partial differential equations.

The solution of them becomes, in most cases, complex and can be1conducted only by means of numerical integration. Only for the

simplest problems can there be obtained an explicit solution, and on
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its basis the process of the propagation of light waves is analyzed.

Two such problems are expounded in this chapter. The first problem

is the modulation of a light wave with passage of it through the

electro-optical medium, which is found in the low-frequency (as

compared to optical frequencies) electromagnetic field, and the

second problem is the passage of a modulated wave through the

parametric amplifier. Both these problems are analyzed in a parametric

approximation, i.e., in the approximation when the field of one of

the waves can be considered assigned. In Chapter IV it was shown

that in the parametric amplifier, while wave of signal did not grow

in amplitude up to the value comparable with the amplitude of the

wave of pumping, such an approximation is valid. An absolutely

analogous position takes place in the case of the propagation of a

light wave on a nonlinear medium occurring in a low-frequency electro-

magnetic field. In this case the action from the side of the light

wave on the low-frequencj field can be disregarded, and only the

influence in the low-frequency field on the field of the light wave

can be examined.

For the foundation of the possibility of examining the behavior

of the light wave in a parametric approximation, let us turn to the

interaction of three waves, studied in Chapters II, IV in a medium

with nonlinearity of the quadratic type and analyze the case when

the frequency of one of the waves is considerably lower than

frequencies of the other two. With incidence on the boundary of

nonlinear and linear media of two waves with frequencies w1 and w2

(in this case COL<Wo') and comparable amplitudes, in the nonlinear

medium there appear waves of sum and difference frequencies:

ei ± 0. (5.1)

If the wave vector of the appearing wave satisfies the condition of

synchronism:

k'= k2± k1, (5.2)

the amplitude of the corres.onding wave grows with distance until

the amplitude of the wave with index "2" falls to zero. With
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fulfillment of the condition of synchronism for the sum frequency
("+"t sign in (5.2)) the amplitude of the wave with subscript "1"

decreases down to a certain value A,,.. If, however, the condition

of synchronism is fulfilled for the difference frequency ("-" sign

in (5.2)), the amplitude of the wave with subscript "1" increases
down to value Am,. In the case %<(o. the drop /12 -A2 or A2 -A 2

10 Am o Im 10
is equal to (see § 4, Chapter II):

A AT
_  

A2
~A2 -A - 2  A2"'A. (5.3)

10 aan =1na 10- 10,

Thus, the amplitude of the low-frequency wave practically does not

change which gives the basis to disregard the effect on this wave

from the direction of light waves. This means that the process of

the interaction of traveling waves in the fulfillment of condition

%<u, can be described quite accurately in the parametric approxima-

tion. Similarly, such an approximation is admissible in the case of

the general form of the low-frequency field.

The process of the modulation of light occurs differently in

anisotropic and isotropic media. In anisotropic nonlinear media

(for example, in KDP and ADP crystals) phase modulation of linearly

polarized waves is carried out. In isotropic media (for example,

crystals CuCl, ZnS and others) and also in anisotropic media in

directions of isotropy with modulation elliptically polarized light

will be formed. Therefore, an examination of the process of modula-

tion in anisotropic and isotropic media will be conducted separately.

§ 2. Modulation of Light in Optically
Anisotropic Crystals

If a light wave propagates in a quadratic medium occurring

under the effect of a modulating electrical field Em(r,t), then the

complex amplitude of this wave AA-, t), as follows' from Chapter II, is

described by a truncated equation of the form:

8A. 2nic" i"
le Ike]]Is "L-+ [e ke]] vA 2'1 (eXeE,) A. (5.4)
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Here, just as in the second chapter, e - unit vector directed over

the electric field strength of the light wave, k and S - its wave
A

and beam vectors and % - operator of the quadratic nonlinear polari-

zation. As was already underlined in the second chapter, the equation

of the type (5.4) determines the change in amplitude A along the

direction of beam vector s. In a direction perpendicular to s.

equation (5.4) does not describe the change in amplitude, and it is

determined only by specific subsidiary conditions of the problem.

These conditions include properties of the medium, boundary conditions,

and the form of the modulating field. Considering that A=Aoe', we

will obtain for V A the expression:

VA=(VA-+iAo7q)e'. (5. 5)

In this expression directions vA0 and Vq in general are different.

If the crystal occupies the half-space x'>O, then vAd is directed

perpendicular to the plane of division of the meaia, i.e., along the

x' axis. If the field E, constitutes a plane traveling or standing

wave, then the direction Vp coincides with direction km of the wave

vector of this wave.

Let us consider at first the case when the field of modulation

Em has the form:

E. =. cos (%f kmr ) ,  (5.6)

Then truncated equations for amplitude A0 and ' will be recorded in

the following form:

+ A
I - BOSmXm

+ A = s - ,(5.7)
A'rp, COS Am

where -coordinate in the direction of the vector kn, rp- group

speed, and

A A (5.8)
Cos sk.COS skm
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From equations (5.7) one can see, first of all, that with

incidence on the crystal of unmodulated light, in the passing wave

there appears purely phase modulation. Integrating the second of

these equations, we have:

BE sina(- ) k- A(5.9)

where

A
A(-)= an - kavrP cosSk, (5.10)

A
2% cos skm

Expression (5.9) characterizes modulation of the phase in the

examined case.

With fulfillment of the relation

* A
vrpCOsskm (5.11)

the index of modulation for given is maximum and grows linearly

with distance along the direction of propagation of the modulating

wave. Here, as one can see from (5.11), the component of the group

velocity of light on the direction of propagation of the modulating

wave is equal to the phase speed of this wave. Condition (5.11) is

the condition of synchronism of the wave of modulation and all

spectral components of the light ware. Actually, for the spectral

component of frequency o+ -e- wm, the condition of synchronism has

the form:

k+ j--k+ k,. (5.12)

Expanding function w(k+)=(k+km) in series and considering that km
in absolute value is many orders less than k, we can obtain the

relation:

Nk~m, (5.13)

which coincides with (5.11).
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Thus, for amplitude E0 of the electrical field of modulated

light wave with fulfillment of the condition of synchronism we have:

Eo = eAoe[ fM-h m(- )1 (5.14 )

If one were to set the defined value , then in this section the

index of modulation m4=B will be constant. As is known from the

theory of phase modulation, amplitudes of combination components of

a wave with frequencies co ±nwm are determined by Bessel functions

J,(me). With a change in E the spectrum of the light wave is trans-

formed. When -m4=2,4, for example, the amplitude of the component

of frequency w turns into zero, i.e., the energy of the wave com-
pletely turns into side frequencies. At fixed tuning can be

produced by a change in amplitude of the modulating wave. Exper'i-

mental realization of such a scheme of modulation is the subject of

work [169].

Let us examine now the case when the modulating field E has

the form of the standing wave

Em = Ecosct coskmr. (5.15)

By presenting the standing wave in the form of the superpositicn

of two traveling waves, it is possible to obtain immediately the

solution of the truncated equation for the phase in the form:

I Sinl'2 -"-B snA(-)4

s-- ~ cos (w*m + kmr - A(+) )# (5.16)

where A(  is determined by expression (5.10), and

A
W(+)- ant+km vrpCOSSkim (5.17)

A
2r cos 3(m

At first glance it is natural to strive to ensure the synchronism

between the light wave and one of the traveling waves of low
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frequency, for example, the first in expression (5.16). The second

wave, traveling in the opposite direction, interacts with the light

wave considerably more weakly and does not give an accumulation

effect. However, the given reasoning has meaning only for those

cases several half-waves of the modulating frequency fit on the length

of the resonator. If, however, on the length of the resonator there

is less than half of a wavelength, then each of the traveling waves

of modulation in equal degree interacts with the light wave, and

fulfillment of the condition of synchronism is not obligatory.

Indeed, let us assume that synchronism is ensured for the first wave

in (5.16), i.e., A(-)=O. Then A+=km and

I fk.E) -- 2 S flkm cos (a t. (5.18)

If one were to designate the index of modulation by the first wave me1,

and the second mb2, then the quantity

, _ 3inkm (5.19)

characterizes the relative contribution of waves into the modulation

of light wave. When km <I quantity mT,. With a growth in this

ratio decreases, since the accumulation effect appears. Such a modu-

lator is described in [1671.

The field E, uniform in space is a special case of a plane

standing wave, when km =0. We have then A(+)=A(-)= =a and

).= po_ B A cos(wmt-A), (5.20)

where g -.coordinate along the direction of the ray of light. (A

corresponding experiment is described in [193]).

§ 3. Devices with Prolonged Effect of the Field
of Modulation on a Light Wave

Modulators of light which use the effects of synchronism of their light wave and wave modulation, have a number of important advantages
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as compared to modulators of other types. One of them, moderate
power, is consumable to modulation. Let us consider, therefore,

certain questiono referring to modulators with one traveling wave of

modulation occurring in synchronism with the light wave. If the

counter wave of modulation is present which in a number of devices

of such type takes place, then its action is little, and in the

first approximation it can be disregarded.

Above, in examining the modulation of light properties of the
A.

medium were described by general tensor X, which in the transition

to the definite type of crystal is specified. Let us clarify the

possibility of light modulation with the help of crystals of dihydro-

phosphates of potassium and ammonium (KDP and ADP), which in an

optical respect are uniaxial. According to [1941 the linear electro-

optical effect is greatly expressed in these crystals only when the

field is applied along the optical axis. Consequently, with realiza-

tion of modulators of light on crystals KDP and ADP, the modulating

electrical field should be directed along the optical axis (z axis).

Let us now consider the question on the polarization of light

waves. Wave vector k,, is several orders less than vector k. Therefore,

for fulfillment of conditions of synchronism of the type (5.12), wave

vectors of the initial light wave and lateral components appearing

in the medium should be close in the direction and in magnitude. On

the one hand, even for a modulating frequency of 10 G-Hz the distinc-

tion of them in magnitude should appear only in the fourth sign.

On tne other hand, indices of refraction for ordinary and extra-

ordinary waves already differ in the second sign. Consequently, all

spectral components must hae one polarization - be either ordinary

or extraordinary. A light wave with an arbitrary direction of propa-

gation and arbitrary polarization due to double refraction breaks up

into an ordinary and extraordinary wave. In virtue of the consider-

able distinction of indices of refraction for these waves, the inter-

action between them is impossible. Each of the waves with propaga-

tion is subjected, in general, to modulation.

The modulation of light is directly connected with properties

of symmetry of the crystals KDP and ADP. These properties of
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symmetry are such that in the expression for the nonlinear part of

polarization:

PIXlkEE. (5.21)

all subscripts ii and k must be different (see Chapter I, § 7).

Inasmuch as along the optical axis (z axis) there is directed i

field Em, the light wave should have components on other axes of the

crystal (let us desi.gnate them x' and y'). Only under this condition

does polarization at side frequencies appear, and it is always

located in the plane x'y'. Waves of side frequencies appear only in

the case when the vector of nonlinear polarization has a component

on the electrical field of side frequency.

Let us consider as an example the propagation of a ray of light

perpendicular to the optical axis (Fig. 5oi). For the most effective

modulation, in this case it is necessary that vector E0 be oriented

in one of the directions [1, 1.0], [1, -1.0]. Only In these cases

does the nonlinear part of polarization, determined by relationship

[5.21], coincide in the direction with vector E0. Coefficient B,

determined by the relation (5.8), is equal in the examined case to

B = (.222 (5.22)
k cos kk,

where Ae - change in dielectric constant of the crystal under the

action of the field E.-Ae=4 XFh%. Let us find this value. Prior

to superposition of the field, section z=O of the ellipsoid of

indices of refraction was circular and the dielectric constant

equaled 0. After superposition of the field EO, along ihe z axis the

circumference of the section is turned into an ellipse, the principal

axes of which pass at an angle of 450 to axes x' and y' of the crystal.
According to [194] corresponding values e along the principal axes

are determined by equalities:

.-- - -r63 . -- -+ 106Em, (5.23)

where r6 - electro-optical coefficient, which consists of, for

141



9' Y°

Fig. 5.1. Concerning the question of
direction P - nonlinear part of polariza-
tion appearing from E, and Em, and

"feeding" wave of side frequencies:
x'0 '. z - axes of the crystal (scale is not
maintained).

example, for KDP8,47.10- cm/V [169]. Hence, In virtue of the small-

ness of modulation factors

el =re (I + eo rg EM); 2= 80(i - e r ) (5.24)

and

AS =.e2roEO. (5.25)

In case of synchronism the modulation factor of phase m4. is

equal to

m#= Bx 3U (5.26)

where it is considered that for KDP crystals with synchronism
A

CoSkkm--- (see [166]). From formula (5.26) it follows that when

X =7000A, no-! 1,5 and E°0=50 V/cm the modulation factor of phase m =1

is at taneA at ance rrn cm.
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§ 4. Modulation of Light in Optically

Isotropic Crystals'

Let us now turn to examination of the process of modulation of

a light wave with passage through nonlinear crystals of cubic
structure (classes T and Td,. It is obvious that such crystals are,

in absence of a modulating field, isotropic. Therefore, the process

of the propagation of light through a crystal, to which a modulating

field is applied, is described in a parametric approximation by the

equation: 2

V1 E 7 -j, -E - - ^E. --1 (5.27)
t CS X it- --

'Interest toward isotropic crystals as light modulators is
explained by the following. In the use of anisotropic crystals for
phase light modulation with rotation of the plane of polarization,
which after passage by the light wave of a Nicol prism is turned into
amplitude modulation, the ray of light should be directed along the
optical axis. In the same direction there should be applied a
modulating electrical field, which creates considerable design diffi-
culties. Furthermore, the ray of light should be parallel to the
optical axis, which puts limitation on the divergence of the light
ray.

The difficulties indicated above do not exist in the case of
the use of isotropic crystals as modulators of light. Here there
are no such serious limitations on the parallelism of the ray of
light. In [186] there is discussion about the satisfactory modulation
of light with divergence of the ray up to 20. In isotropic crystals
the modulating field can be applied in a direction perpendicular to
the direction of the propagation of light. Here it is possible to
carry out modulation immediately by two signals applied in mutually-
perpendicular directions [224]. Regarding, however, the magnitude
of the electro-optical coefficient, then, for example, for ZnS it is
only 4 times less than that for KDP, and consists of according to
data given in [224] and [186], r,.2 1

-'0 cm/V.

2In the given equation instead of rot rot E there is recorded
-v'e. This is connected with the fact that at the force standingin t. reIght s1de of the equation and leading to a change in E,
"working" is the component lying in a plane perpendicular to vector k.

Therefore, for resolution of the problem, it would have been possible
to multiply the fundamental equation vectorly by -{k4ka .... fl. The result
of the action of this operator on rot rot E is - V2E+ small terms,
and the order of their smallness is higher than that which is con-
sidered with subsequent discussion. Thereby the aforementioned re-
placement is justified, since multiplication by -#-... will be
performed further; however, the reader will lead up to this operation
by more graphic path.
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where the linear part of polarizationVP is connected with field E
A

through the scalar functional operator x:

p -r d (5.28)

and forced anisotropy is determined only the modulating field Em(r,t).

Subsequently, we consider that the right side of (5.27) is small and

has the orarr U.

With the propagation of light in an anisotropic nonlinear

crystal the modulating field practically cannot change polarization

of the natural wave. This occurs because the directions of natural

polarizations with the assigned direction of the beam vector are

determined by optical properties of the crystal directly connected

with its spatial symmetry. In an isotropic crystal in the absence

of a modulating field, all directions of polarization are natural,

the case of degeneration takes place. Superposition of the modulating

field on the crystal removes this degeneration - the light wave with

propagation over such crystal changes, in general, its polarization.

Thus, the field of the light wave is described by the expression:

E = Eo(pr, pf)eIc tk + IU(r, p)e t w, (5.29)

where in contrast to the case of the anisotropic cryst~al the amplitude

E (prp1) is a vector slowly variable in magnitude and direction but

remaining perpendicular to the vector k

(kEo) = 0. (5.30)

'The term pU(r,pt) considers th. tnaccuracy and is small at all values

of coordinates and time. Let us derive the equation describing the

behavior of amplitude Eo(jIr, gt).

Proceeding just as in the second chapter in the derivation of

truncated equations for the amplitdue of the wave in an anisotropic

nonlinear dielectric, we will write out the approximate expression
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for PO). It has the form:

PO) () Eo -iL -]e + -Px(0)U} e (5.31)

The second derivative of this vector with respect to time, which

enters into equation (5.27), with the same degree of accuracy is

equal to

° P"+ 2" 80o e£(t-kr)
W2 W= -- +P Vpo -Le1(0 (5-32)

Expression __E is approximately equal to

_ -- E- + t -- Ulc'.  (5* 33)

and expression V2E

VE- [-2il(k)E.e'r-k 2 -e-1"r+ V - Ul e. (5.34)

Substituting all these expressions into (5.27) and considering that

---- [1 + 4:tx (fl (5.35)

we have:

v'U + - - (I + 4rn) U - i (DkV)Eo + -(I + 4:x) +

+ 2n( _L Ep + 21ate eA kC X E,8 Ee(5.36)

The linear differential operator, which acts on the vector function U,

in the left side of (5.36) has the eigenvalue k and eigenvector -

any vector perpendicular to k. Therefore, the right side (5.36) is

resonance for the differential operator. For limitedness U at all

values of coordinates and time (requirement of smallness of the

correction term), it is necessary that the projection of the vector

standing on the right on a plane perpendicular to k, be equal to
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zero. This condition is given by the equation describing the

behavior E0. Before writing it out we will consider that according

to (5.35)

k I .__.d 0(1 + 4 ). (5.37)d0 " Vrp £2 do)

Replacing the coefficient with a time derivative in the right side

of (5.36), in accordance with (5.37) we have:

k E 2E Ikc [koxE.E.11. (5.38)(kor at +o +C OX=k--W

A

The right side in (5.38) is a projection of vector XEmEo on a plane

perpendicular to k, and k0 is a unit vector in the direction of k.

The truncated equation (5.38) is an equation describing in a para-

metric approximation the proces6 of propagation of a light wave in

an isotropic nonlinear medium.

The direction of the change in amplitude E0 is determined, in

general, by conditions of the problem. If, as in § 2, the modulating

field has the form of a plane traveling or standing wave, then the

direction of the change in E0 coincides with wave vector km of the

modulating wave. Designating the coordinate in the direction of

this wave vector by , we have E0=EO(Lt) and

cos k ka +[k - [ko X E E. ] '  (539)

The vector operator [ko[koE...]] , which acts on vector F-9 in the right

side (5.39), turns it in a plane perpendicular to k# at a definite

angle. This leads, In general, to a change in the plane of polari-

zation of the light wave with its propagation. There are, however,

two directions of polarization - eigenvectors of the operator
f A
Ike[koZEm...JJ, which are not changed in direction during prpag.ton.

These directions are determined by properties of symmetry of crystals

and by the modulating field. Let us assume that, for example, the

modulating field is directed along one of the edges of a cubic
A

crystal (z axis). Then, as follows from the structure of tensor X,
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for cubic crystals (Chapter I)

P= aE.Eo,; Py= aE=E,, (5.40)

where a=.x... and the x and y axes are directed along two other

edges of the crystal. Let us consider two cases when the light wave

propagates along the z axis and when it propagates in the plane xy.

If the wave propagates along the z axis, then in the xy plane

there exist two natural directions of polarization e1=[1,l,O] and

e =[(,-1,OJ. Along these directions elo [ko[ko AE,e1] and .fl[kO ko^Eej.

With entry of a light wave with any polarization into such a crystal

along the z axis, the wave is split into two components with polari-

zations along directions el and e2. Each of these waves propagates

independently of the other with its own phase speed. If Eo is

directed along the x axis, then amplitudes of waves El and E2 are

equal so that 'E1 -IEI=j.E If the modulating field has the form of

a traveling wave with a longitudinal component E,, and the condition

of synchronism (5.11) is fulfilled, then waves El and E2 undergo phase

modulation according to the law studied in § 2.

= - Bz cos (w, t - k. z); (
= yo+ Bzcos (ot-k.z) (5.41)

For each of the waves we obtain the final expression:

= (at- -okz + -- o-Bzcos(%.t-kmz));
(5.42)

E2 = cos (at - kz + 4o + Bz cos (,, t- k. z)).

In a certain fixed section z there occurs the addition of two mutually
perpendicular oscillations with equal amplitudes. The form of the

closed curve described by the end of vector E depends on the differ-

ence of phases Ay of these oscillations, which, as one can see from

(5.42), is equal to:

AT 28z cos (,,, t-k.z.). (5.43)
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At a certain Jnstant t the difference of the phases between oscilla-

tions is equal to Ap. Let us see what will occur in section z0 in

the interval of time Ai such that cosmmt after this time interval

almost does not change and cosct succeeds in accomplishing many

oscillations. The given assumption with respect to the time interval

At means that the difference in phases Ap in this interval can be

considered constant. Quantity Ap determines the form of the ellipse,

which is described by the end of vector E. Principal axes of the

ellipse coincide with axes x and y. In the case Aq=O the ellipse

degenerates into a straight line. When AT=-! the ellipse is turned
2

into a circumference. The eccentricity of the ellipse changes with

a change in Ap, i.e., with a change in the modulating field. Setting

on the path of light the Nicol prism, the amplitude modulation of the

light wave can be obtained. If in the initial light wave vector E

is oriented not along the x axis but in a certain arbitrary direction,

Lthen amplitudes of waves on which the initial wave disintegrates
prove to be different. With the help of the Nicol prism here it also

is possible to carry out amplitude modulation; however, at a great

difference in amplitudes of waves the modulation will be less

effective, since in this case the eccentricity of the ellipse changes

in small limits.

If the modulating field Em is spL ''y uniform, then for the

modulation of the phases we obtain the expression:

T.2 = : B sin ' zcos' t u (5.44)
wIS2rp~ 2%r

and the difference in phases in this case

Aq 2B sin -.Z (cosm, Z). (5.45)w,,,/2vr 2urp 2v z 5 4

LeU us now exami the second case .. the wave vector k is

located in the xy plane. In this case the light wave with amplitude

E0 breaks up into a wave with polarization along the z axis and a

wave with vector of polarization located in the xy plane. The first

of these waves in accordance with (5.40) is not modulated with passage

through the crystal. The degree of modulation of the second wave
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depends on the direction of the propagation of light. If the light

wave propagates along the x or y axes, then modulation is absent.

If, however, it propagates in directions [1, 1.0], [1, -1.0] or

opposite directions, then the degree of modulation is maximum.

If the field of modulation has the form of a traveling wave,

and the condition of synchronism of it is carried out with the light

wave propagating in direction [1, 1.0], the process of modulation is
described by expressions:

= + BE cos (o. t- k.'E), ( 5.4 6)

where E - coordinate in direction k, and the difference in phases

A q = BE cos (. I- k. ( 5.47 )

For the case of a uniform modulating field

- *,01 2orp 2oVp2ar

In conclusion one should note that the seccnd method of amplitude

modulation, at which the ray of light is perpendicular to the modu-

lating field, at equal intensities of this field and at equal ampli-

tudes of components of waves is twice less effective than the method

at which the light ray coincides in direction with the field strength

of modulation. However, design advantages of the second method are

quite great, and in a number of systems of modulation its use is

preferable (see [195]).

§ 5. Conversion of the Form of Modulation with
Parametric Amolification

of Traveling Waves

As was already indicated in the introduction to this chapter,

an important class of problems on modulated waves in nonlinear media

are problems on the transformation of the form of modulation of the

wave. Actually, in a highly dispersive medium there can be created
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conditions at which even the coherent generating of the second

harmonic is impossible. A harmonic wave of frequency w0 in such a

medium will propagate in exactly the same way as in the linear case

(the dispersion already in frequency band o, 2wo is quite great).

Another situation takes place if the wave is modulated; the presence

of nonlinearity can lead to stored distortions of the form of modu-

lation of the wave, although the wave itself remains here quasi-

monochromatic. It is easy to understand the latter if one were to

turn to spectral concepts. The modulated wave occupies a finite

spectral interval Am; when LD<1 the interaction of different compo-

nents lying in the band Am can lead to the appearance of stored

effects, inasmuch as dispersion in the band Am is expressed weakly.

One of the examples of the conversion of modulation in a highly

dispersive medium - distortion of amplitude modulation in a nonlinear

medium - is examined by Ostrovskiy [173]. An interesting result of

the calculation conducted by him is the conclusion concerning the

possibility of the appearance of Riemannian waves of enveloping in

a high.,' dispersive medium.

Below we will examine another problem on the conversion of

modulation: we will analyze the process of conversion of modulation

with the interaction of two waves with multiple frequencies (m,=w;

W2=2w) in a quadratic medium. We will consider that the field

strength of the wave at frequency 26 3onsiderably exceeds the field

strength at frequency w; therefore, the problem stated can be solved

in a parametric approximation (see § 4 of Chapter !I). Thus, let

us assume that the polarizability of the medium has the form:

A A A

% (z, t, t) = z(f) + M (1) exp i [2t- k] (15.491 )

The field at frequency w will be written in the form

E = eo A (t, r) exp i [ft-kr]. (5.50)

We will consider, as always, that

k. =2k + A;AI/k,1.
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Calculating with the help of (5.49) and (5.50) polarization of the

medium at frequency w (see formula (2.103a)), substituting the

obtained expressions in the Maxwell equations and using the standard

method discussed in Chapter II, we arrive at the truncated equations -

equations of the parametric smplifier of the traveling wave:

A A OA I OA A rA=

Aa

Cos k -co s z- C --OS 1 +A eo aeo A + iTW e-4t'A= (5.51a)
02 . or', &

cos k, s, cos s, Zo- z A A -,, -+ eoeo.- nlt 2 'rA =.0. ( 5.51b )

Here '=L-eOM(o)e 0 [compare (2.78)].

From (5.51) it is clear that the behavior of amplitude A is

described by a system of two truncated equations (complex) in partial
derivatives, which are not split and which must be solved jointly.

Here there formally occurs an interaction of waves with frequencies

+w and -w. Actually this means that the behavior of waves with

various phases with respect to the phase of the wave, change of

parameter (5.49) differently (see also § 4 of Chapter IV).

To solve the system of equations (5.51), let us introduce new

variables:

A

= + ( + 'tp cos kI StCOS S1 Zo);
A * A

= (Z tvrp cos k S, cos S, Zoy. (5. 52)

Equations (5.51) then obtain the form:

A A dA" A
cos k1 s, cos s Zo z- eo a eo A + i t e - 21(&" j+y') A =0

A A 
(5-53).

cos k, s, cos sjL Zo + f'eo~a*eo A* -- q ~ A ,,)A = 0, ..

where A'=As, and y'=As, L Equations (5.53) are ordinary differential

equations with respect to the argument l' and argument 2 enters

as a parameter. They can be solved in general form; however, this

solution is very bulky, and we will analyze the equations for the

case A =0. Then we have:
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F A.

A A, ( s)exp - A A +
' l L coslk, s, cos s, zo

:[+ A2 R2) exp _L, ^e ^ (0 ( 5.54 )

+A(~ [7p A A

where on arbitrary complex functions A(4,1 ) and A2 (t,) by equations

(5.53) there are imposed limitations of the form:

At= iA; A 2 =-i,. (5.55)

This means that

A,(I) + s )Bj( 2); A2(R) =(1 -- )B2(), (5.56)

where Bl(E 2 ) and B2(. 2 ) - arbitrary real functions. Finally for A we

have:

JA A_-*B2t((I +(l ) ex p  ea aeo-- (0 n -t -
A A

1cos k x cos sjzoI

~~-I- B,2&) - (1-)exp -- -O--- t " ( 5.57 )

Usine (5.57), one can determine the form of modulation in the arbi-

trary section z according to the assigned modulation at the input

the assignment of boundary conditions permits 
uniquely determining

functions B,(B. ), B2(t).

In the investigation of distortions of modulated 
signals in

nonlinear media, it is frequently more convenient to use equations

for real amplitudes and phases. The equivalent (5.53) equations for

the real amplitude A and phase 4 of the modulated signal in a

degenerated parametric amplifier of a traveling 
wave have the form

[compare (4.69)-(4.70)]:

dA +GA. iAsin 2p + M 0 (5.58a)

d A + oAC s2V 0. (5.58b)
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Here designctions a, 8, and A, art analogous to dasignations

accepted In Chapters III-IV.

Truncated equations (5.58) should be solved with boundary

conditions set at z=O. It is necessary to consider that in new

variables t,E2 the point z=O corresponds to ',=-E: [see (5.52)].

Therefore, if in variables tz boundary conditions have the form:

i! • ~z=o; A(O,O=Ao(1); ,0,.o0,(5.59)

I that in variables L, tj we have:

, =--,;A=Ao(-t,); 0= (--t,). (5.60)

Using (5.58) and (5.60), one can determine, for example, the law of

the change in phase of the amplified wave (we will limit ourselves

for simplicity, as earlier, to the cese A=O ). Inasmuch as the phase

equation can be integrated independently of the amplitude, by

conducting integration and passing to variables t, z, we obtain:

yp(tz)=ert e 1~OhU~C~~~

f\6 o Ag AJj (5.61)

A • A

U.rP cos ks I COS $1 ZO

From (5.61) it is clear that with a growth in z the index of the

phase modulation in the degenerated amplifier of the traveling wave

decreases.

Using the result of (5.61), it is possible to integrate the

amplitude equat-on.

The modulation of the amplitude when z 0 is determined not

only by the amplitude, but also by phase modulation of the input

signal.
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We will not discuss more specifically the examined example; it -

detailed analysis is given by us in [56]. Here we will underline

only that the change in variables (5.52) is very effective in the

theory of modulated waves in nonli.near dispersive meAia, inasmuch as

it allows reducing partial differential equations to equations in

common derivatives. In [56] this procedure was used for investigating

statistical phenomena in the parametric amplifier of a traveling wave.

The same approach can appear, apparently, expedient in the in-

vestigation of problems connected with the generation of harmonics by

modulated waves, with the investigation of statistical phenomena with

nonlinear wave interactions and so on.

In this chapter we were limited to the examination of modulated

waves in a quadratic medium.

Similar problems can be of considerable interest for the cubic

medium; with this here certain effects connected with the presence

of nonlinear corrections to the dielectric constant are possible.

As an example let us indicate that in the cubic medium there can

take place the effect of cross-modulation - an amplitude-modulated

wave in a cubic medium modulates the phase of a weak wave, etc. (see,

for example, § 4 of Chapter III, where there is introduced the

concept of "nonlinear tuning"). Let us also note that effects
connected with the change in constant polarization of the medium in

the field of the modulated '-ave were examvined recently In the work

of Askar'yan [203].
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(U) The nonlinear effects examined in this book are effects of
the first order with respect to sn,all parameters, parameter of
anharmonicity and parameter characterizing the ratio of the
shift of the charged particle to the wavelength. The rapid pro-
gress in laser technology at present provides the obtaining of
such electromagnetic field strengths at which effects of the
second order can appear. Nonlinear scattering is an interesting
effect of the second order. In further development the theory
of waves in a nonlinear medium, discussed in Chapter 2 is needed.
Here the primary interest is in the propagation of it on light
beams of finite aperature, converging beams etc. An account of

,the finite width of the spectrum of interacting waves is also
very important (discussed in Chapter 6). It should be noted
that in a number of cases the real two-dimensional problem is
reauced to an equivalent one-dimensional problem by an appropriate

:1 selection of the "frequency difference" vector (Chapters 2,3,and
6). It should also be noted that the forced combination (Raman)
scattering is not, of course, the only example of nonlinear inter-
action, where part of the energy of interacting electromagnetic
waves gives rise to oscillations of the medium not possessing an
electrical dipolc moment. In a number of problems on nonlinear
effects in crystals, acoustic oscillations ("forced Rayleighi! I  ++_ " h IdH be considered -.... ,
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